
Intermediate PyMOL

Preface! 3

Typing Commands! 4
The Command Lines ! 4

Introduction to PyMOL Commands! 7

Mastering Selections! 9
Objects vs Selections ! 9

PyMOL Selection Language! 11

Settings! 14
Controlling Settings ! 14

Scripted Automation! 16
Creating a Custom Preset View! 17

Displaying Residue-level Properties! 18

Creating Your Own Functions! 18

Next Steps! 20
Other Courses! 20

Joining the PyMOL−Users Mailing List! 20

Visiting the PyMOLWiki Community Web Site! 20

Accessing the Official Documentation Site ! 20

Indices! 21

Intermediate PyMOL

2

Preface
Copyright Notice
This Tutorial is Copyright (C) Schrödinger. All Rights Reserved. Unauthorized reproduction or dissemination is
prohibited under United States and international copyright laws. "Intermediate PyMOL" is a PyMOL Incentive
Product created for the exclusive use of PyMOL Subscribers who sponsor the effort financially. Unrestricted distri-
bution of this material could jeopardize the financial integrity of the PyMOL project, so please DO NOT POST
THIS DOCUMENT IN AN INSECURE OR PUBLICLY ACCESSIBLE LOCATION. Current PyMOL Subscribers
may only distribute copies of this tutorial internally to users within their organization who are covered by the scope
of the subscription. If you come into possession of an inappropriate copy of this document, please either delete it or
contact sales@schrodinger.com to purchase an appropriate PyMOL Subscription.

About This Booklet
This is a follow-along guide for the Intermediate PyMOL classroom tutorial taught by Schrödinger. It covers ad-
vanced selection making, settings and commands, automation with scripts, and commonly requested activities. This
tutorial exposes the foundation that differentiates novice users from power users of PyMOL. Once completed, the
user should be able to operate flexibly with selections, use commands and settings, extend PyMOL to create new
functionality and automate commonly encountered tasks.

Those new to PyMOL should first attend or read the Introduction to PyMOL tutorial before attempting this tutorial.

Requirements
Before starting this tutorial, please ensure that you have the following.

• PyMOL version 1.2 or greater

• A 3-button wheel mouse

• Tutorial-specific data files found in the IntermediatePyMOL subfolder of the PyMOLTutorials archive
supplied by Schrödinger. This archive is typically provided as a compressed "ZIP" file, which should be ex-
tracted on to your Desktop

• The reader should be very familiar with PyMOL to the point of having read and understood, or attended the
Introduction to PyMOL classroom tutorial taught by Schrödinger.

Please also make sure that your keyboard Caps Lock key is turned off when using PyMOL.

Intermediate PyMOL

3

mailto:sales@delsci.com
mailto:sales@delsci.com

Typing Commands
Load the Tutorial Session File
Please load the file PyMOLTutorials/IntermediatePyMOL/sessions/selections.pse. Your screen should
look similar to Figure BP1. This session consists of two ki-
nase molecules shown as rainbow colored ribbons with their
ligands, Staurosporine and Imatinib, shown as sticks. We will
use this PyMOL session to help us learn about commands and
selections.

The Command Lines
PyMOL has two command line interfaces, one is at the bottom
of the Display Area and the other is at the bottom of the Upper
Control Window. Figure CL1 shows the PyMOL user inter-
face with the two command lines highlighted. Please take a
moment to find these command lines. Click on each and verify
that you can enter text into the command line. Into the Upper Control Window’s command line, please
type orient into and press ENTER. PyMOL orients the scene by the principal axes determined by the
coordinates of all the atoms in the scene. Now, please type zoom resn STU into the command line at
the bottom of the Display Area. Press ENTER. PyMOL zooms in on the molecule whose residue name
field in the PDB is "STU." This happens to be the Staurosporine molecule.

Features Common to Both Command Lines
Both command lines in PyMOL support the
same basic functionality and behave similarly
to the Unix/Linux-style command line inter-
faces. You can enter text by typing into them,
reposition the cursor, review your command
history, and get help through auto-completion.

Try It—Positioning the Cursor
You can position the cursor at the start and
end of the command lines. Please type
orient, but this time do not press ENTER.
Your cursor should be at the end of the com-
mand line. Press CTRL-A. PyMOL positions
the cursor at the beginning of the command
line. Now press CTRL-E. PyMOL repositions
the cursor at the end of the command line.

Figure BP1. PyMOL tutorial session for selection
making.

Figure CL1. PyMOL GUI with highlighted command lines.

Intermediate PyMOL

4

You can also use the arrow keys to navigate the command lines. Please press the left arrow key until the
cursor is underneath or directly to the left of the ‘e’ in orient. Now, press CTRL-K. PyMOL deletes all
the text to the right of the cursor. Please finish typing the command origin and press ENTER.

Try It—Examining the Command History
You can scroll back through your history by pressing the Up Arrow. Please try that now and review the
commands you’ve entered. You can scroll forward through the history using the Down Arrow.

Try It—Auto-completion
You can get PyMOL to auto-complete what you’re typing by pressing the TAB key. For example, please
erase all the text on the command line and then type in orig and press TAB. PyMOL completes the
command name, origin. If the remainder of the text is unique, PyMOL will auto-complete the word for
you. If the remainder of the text is not unique, PyMOL will show you a list of possible completions. To
see this, please type ori and press TAB. PyMOL displays:

 parser: matching commands:

 orient origin

which means that it found two possible completions of the string ori; the commands orient and ori-
gin.

Two last tips: to see a list of all commands, press the TAB key when there is no text on the command line;
and, to get help for using the keyboard you can type help keyboard. Don’t forget to press the ESC
key to see the help text in the console if it doesn’t show up.

Special Features of the Upper Control Window’s Command Line
Now we focus on special features of the Upper Control Window’s command line. Please click there to
give it focus.

The command line in the Upper Control Window also supports copy and paste. You can copy text from an
external application like Notepad or your web browser and paste it into this command line. Let’s see this
in action. Please type select none into the command line, but do not press ENTER. We will now
copy the text. Please hold the SHIFT key and press the left arrow key until all the text on the command
line has been selected. (You can also select text with the mouse.) Now press CTRL-X and PyMOL will
cut the text from the command line. You can now paste this text into another application if you desire. For
now, let’s just paste it back into PyMOL by pressing CTRL-V. Only text cut with CTRL-X can be pasted.

Try It—Special Features of the Display Area’s Command Line: Copying, Cutting, and Pasting
Atoms
Now we focus on special features of the Display Area’s command line. Please click there to give it focus.
Please note some of the features described in this section are new in PyMOL v1.5, so if you have an ear-
lier version these commands may not work for you.

Intermediate PyMOL

5

The command line beneath the Display Area has two different modes depending on whether there is text
on the command line or not. If there is text on the command line maps its special keys to operate on the
text. So, as you saw, CTRL-A will go to the start of the command line. However, when the command line
is free of text PyMOL will map those same keys to operate on selected atoms in the scene. For example,
when the command line is empty, CTRL-A will select all atoms. These actions for special keys are similar
to a text editor. PyMOL allows you to use CTRL-C to copy atoms, CTRL-X to cut atoms, and CTRL-V to
paste the selected atoms into a new object. Please note that when copying or cutting atoms, PyMOL acts
only on the currently enabled selection. So, if no selection is enabled no atoms will be copied.

Let’s try copying a selection and pasting into a new object. Using the keyboard we will create a new se-
lection consisting of the first complete organic small molecule. Then we will copy and paste it into a new
and distinct PyMOL object. Please select the first organic small molecule in the scene by typing the fol-
lowing: select bm. first organic and press ENTER. To see what we’ve selected, please type
zoom sele. Now please press CTRL-C. PyMOL copies the selected atoms into memory, even though
nothing visually changes. Press CTRL-V. PyMOL pastes your selected atoms into a new PyMOL object,
named "obj01".

This functionality only exists when focus is on the Display Area and when the command line is free of
text. PyMOL supports other operations on atoms. Please see Table K1 to see a listing of all the keys and
their respective functions in PyMOL.

Special Key Text on the Command Line Empty Command Line

TAB Auto-complete text Display list of all commands

CTRL-A Position cursor at beginning of line Select all atoms

CTRL-C Copy currently selected atoms

CTRL-E Position cursor at end of line

CTRL-I Invert selection

CTRL-K Delete all text to the right of the cursor

CTRL-V Paste into the command line Paste copied atoms into new object

CTRL-X Cut atoms

CTRL-Y Undo

CTRL-Z Redo

Table K1. List of known special keys and their functions.

Intermediate PyMOL

6

Introduction to PyMOL Commands
PyMOL has more than 160 commands and each command performs a specific action. But, don’t be in-
timidated, getting help is easy.

Try It—Getting Help With Commands
You can get help for each command by typing help followed by the command name. Please type help
orient. The Upper Control Panel shows help text for the orient command. This help text is also dis-
played in the Display Area’s console, but the text console is currently hidden by the graphics. You can
switch from graphics mode to console mode by pressing ESC when focus is in the Display Area, as shown
in Figure C1. So, please click somewhere inside the Display Area and press the ESC key. PyMOL
switches from graphics mode to console mode where you should see the help text for the orient com-
mand.

You can also get the usage for a specific command by simply typing the command name followed by a
question mark. Please type orient ?. PyMOL displays the usage for the orient command:

Usage: orient [selection [, state [, animate]]]

This might look complicated, but it is simply telling you that PyMOL expects the command name,
orient, followed by up to three optional arguments: selection, state and animate. Bracketed words, like
[animate], indicate that the argument is not required for the command to work properly. You will no-
tice that all three arguments are optional; so, just typing orient alone is valid usage. Please type
orient. Notice that PyMOL orients the scene with respect to all atoms. Now, please type orient
organic. PyMOL now orients the scene, but only with respect to the coordinates of the small organic
molecule(s) in the scene. Because the word organic immediately followed orient, organic is as-
signed to the selection argument per the usage. You can manually specify an argument by typing the
argument name followed by an equal sign followed by your input. For example, orient animate=1.
Please type that now.

Press

ESC

Figure C1. Pressing the ESC key when focus is in the Display Area switches PyMOL from graphics mode to console mode.

Intermediate PyMOL

7

Command Syntax
All PyMOL commands follow a similar syntactical structure. The first word is the name of the command,
like orient, ray, align, or intra_fit, followed by a space. After the space is a comma-separated
list of arguments. So typical usage looks like the following: command arg1, arg2, arg3.

Often a command has sensible default values that makes manual specification of the arguments unneces-
sary. For example, as we saw above, the orient command’s first argument is the selection to orient,
which defaults to all atoms. You can provide a specific set of atoms to orient if you want, but the default is
all atoms. Command completion works for all commands and many of their arguments.

Before we move on to working with selections let’s learn how to use a new command and determine its
parameters. We’ll save a custom sized and custom resolution image of the scene with the png command.

Try It—Create a Custom Sized and Resolution Image
In this example we will use the png command to save a 3 inch by 2 inch, ray traced image, at 300 dots
per inch (DPI). However, a review of how resolution works in (raster) images is useful so we can under-
stand if the png command has returned the desired result.

Every (raster) image has a property called resolution—usually measured in dots per inch or DPI. Images
for presentation or display on a computer are best set between 72 DPI and 200 DPI because that’s what
the display is capable of reproducing. Images for printing or for publication are typically required to be of
much higher resolution, like 300 to 1200 DPI. Given the
resolution of an image as DPI and its size in inches, we
can determine how many dots, or pixels, the image
should be.

To determine the height and width in dots we multiply the
resolution by the size in inches. So, to create our 3 inch
by 2 inch image at 300 DPI we need an image that’s 900
dots (3 inches x 300 DPI = 900 dots) wide by 600 dots (2
inches x 300 DPI) tall. Now that we know the width,
height and DPI, let’s see how to specify that information
to the png command. See Figure P1 for an illustration of
the calculation.

Please type png ? to see the usage for the png command. PyMOL shows the usage as:

	

 Usage: png filename [, width [, height [, dpi [, ray [, quiet [,

 prior [, format]]]]]]]

For this image, we need to provide a filename, and the optional parameters for width, height, and DPI.
Luckily, PyMOL has exactly those arguments for the DPI command. Now please use the numbers we cal-
culated with the png command by typing:
	

 png ~/pymol.png, width=900, height=600, dpi=300, ray=1

Figure P1. Example calculation of image size in dots,
or pixels, given a resolution of 300 DPI, width of 3
inches and height of 2 inches.

Intermediate PyMOL

8

PyMOL ray traces the custom image and saves it as "pymol.png" in your home directory. By setting the
ray argument to 1 we forced PyMOL to ray trace the image before saving it. Please note it is important to
repeat this procedure for all your custom high resolution images.

Let’s move on to learning about atom selections in PyMOL. Most PyMOL commands are operations that
deal with atom selections. This means that under the hood, creating and operating on atom selections are
the most commonly performed actions in PyMOL. For those who frequently use PyMOL, mastering at-
oms selections may dramatically increase your productivity.

Mastering Selections
Objects vs Selections
An object in PyMOL is an entity represented in memory as a special Python object or a compiled graph-
ics object (CGO). Objects are commonly molecules, molecular complexes, and CGOs. Molecular objects
have a hierarchical structure that can include molecules, segments, chains, residues, atoms, and more. Ob-
jects appear by name in PyMOL’s Object Menu Panel. See Figure OS1.

An atom selection or selection is a user-defined set of atoms chosen from one or more objects. Selections
themselves do not have any properties except for a name. Selections are a just way to register our interest
in a special list of atoms of our choosing. Selections appear in the Object Menu Panel by their name sur-
rounded by parentheses. See Figure OS1.

We will now use selections to perform a few common tasks.
First, we will create selections for solvent and inorganic atoms
and then remove these atoms. Next, we will create a selection
named "pocket" that contains only those atoms within 5 Ang-
stroms of the Staurosporine small molecule. We then highlight
this pocket by showing the selected atoms as lines and surface
and finding polar contacts.

Try It—Removing Unwanted Atoms
PDB files typically consist of four types of molecule: protein, solvent, small organic, and inorganic. How-
ever, often we are only interested in the protein and the ligand, usually a small organic compound. So,
let’s select and remove everything but the protein and ligand. To create the named selection please type,
select unwanted, solvent or inorganic. PyMOL creates the selection, displays "(un-
wanted)" in the Object Menu Panel, and indicates the atoms with pink dots. In the console window
PyMOL also offers feedback on the selection by reporting the selection’s size, here 400 atoms. We can
now control these 400 atoms all at once by referring to their selection name, "unwanted". They’re in the
way now, so let’s remove them. For the selection "(unwanted)", please click A→Remove Atoms. PyMOL
removes the atoms and the "(unwanted)" selection. No other atoms were effected, just those that we se-
lected for removal.

Figure OS1. Objects and selections in the Object
Menu Panel. Selection names are always en-
closed in parentheses.

Intermediate PyMOL

9

Try It—Identifying the Binding Pocket
Another common task is identifying the region around a ligand. Once identified, we can prepare it for
manual molecular editing, find polar contacts nearby, or even clean up the selection with a minimizer.

Let’s begin by creating the named selection, "pocket",
that consists of all atoms in 1oky within 5 Angstroms of
the Staurosporine molecule. In the PDB file 1oky.pdb the
Staurosporine molecule’s name ("residue name" field) is
"STU". So, in PyMOL we’ll use resn STU to refer to
Stuarosporine; resn just stands for "residue name".
Please create this named selection by typing: select
pocket, 1oky within 5 of resn STU.
PyMOL creates the named selection, displays "(pocket)"
in the Object Menu Panel, and indicates the selected at-
oms with pink dots. Your screen should look like Figure
RS1. This one concise command filters through thousands of atoms to select just those we desire. Now,
for the "(pocket)" selection, please click S→Show→Lines. PyMOL shows the selected atoms as lines. To
view the binding pocket as a surface, please click S→Show→Surface for the selection.

Let’s finish this example by finding all polar contacts within the selection. For "(pocket)", please click,
A→find→polar contacts→within selection. PyMOL identifies and shows the polar contacts as yellow
dashed lines.

Here we manually created selections for the binding pocket. PyMOL can also auto-generate these selec-
tions with a few mouse clicks. Let’s look at that, too.

Try It—Identifying the Binding Pocket with Auto-generated Selections
Just like the A→Action→Presets menu has a set of convenient presets for visualization, A→Ac-
tion→Generate→Selection... has a list of selections it can auto-generate. The current list consists of: all,
polymer, organic, solvent, polar hydrogens, non-polar hydrogens, donors, acceptors, and surface atoms.
Let’s explore these selections by repeating the previous example of finding the binding pocket, but using
only the mouse and the other protein in the session, 1t46. Please disable all objects and selections except
for 1t46. Recall that clicking on the object name in the Object Menu Panel will toggle whether the object
is enabled or not. Let PyMOL find the organic small molecule in 1t46 by for you by clicking A→gener-
ate→selection→organic for 1t46. PyMOL creates the named selection "(1t46_organic)", and indicates
the selected atoms with pink dots. Please rename that selection "(pocket)" by clicking A→rename selec-
tion, for "(1t46_organic)". PyMOL creates the "(pocket)" selection overwriting the previous one. Now,
let’s expand the selection to all atoms within 5 Angstroms of 1t46 by clicking A→modify→ex-
pand→by 5 A. Because we have two molecules loaded, PyMOL selected every atom within 5 Angstroms
of 1t46; that means, some atoms in 1oky were also selected even though 1oky is not enabled. Let’s now

Figure RS1. Atoms within 5 Angstroms of the organic
small molecule Staurosporine selected and indicated
with pink dots.

Intermediate PyMOL

10

restrict the selection to just 1t46 by clicking A→modify→restrict→to object→1t46. We can show lines
for the selection by clicking S→show→lines for "(pocket)". Please also show the surface for "pocket" by
clicking S→Show→Surface. Last, we can find the polar contacts by clicking A→find→polar con-
tacts→within selection, for "(pocket)".

PyMOL Selection Language
PyMOL ships with a robust selection language. Using this language requires us to type selection com-
mands into the command line. Please click in the Viewer Window to focus on the command line. To
completely understand selections in PyMOL, we need to understand two more concepts: selection-
expressions and how to use the select command.

Selection-Expressions
In PyMOL, a "selection-expression" or "selector" is text representing a specific set of atoms to be se-
lected. For example, above we typed, zoom resn STU. The command is zoom and the selection-
expression is resn STU. In PyMOL the keyword resn STU means the residue named "STU" as read
from the PDB file. There could be thousands atoms across multiple objects, and PyMOL gives us a way to
focus on just what we want—this one residue. A selection-expression can be as simple as a single word,
like solvent, or as complex as a multi-line, multi-parenthetic, multi-operator expression spanning mul-
tiple objects and properties.

Single Word Selectors
PyMOL makes it easy to select commonly used sets of atoms by providing built-in single-word selectors.
For example, the organic selector finds all organic small molecules. Another example is polymer
which selects only those atoms in a polymer—like proteins or nucleic acids.

Table SE1 has a list of the most commonly used single-word selection-expressions. Please see Index A for
the entire list of single-word selectors. Please review this table. Frequent users of PyMOL are suggested

Single Word Abbreviated Form Description

all all All atoms

none none No atoms (empty selection)

solvent sol All waters

organic org All atoms in non-polymer organic compounds

inorganic ino All non-polymer inorganic atoms and ions

polymer poly All atoms in a polymer

Table SE1: List of commonly used single-word selectors.

Intermediate PyMOL

11

to memorize the entries in this table; this will save time in the future. Each single-word selection-
expression has an abbreviated form. For example, org is the abbreviated form of organic.

Try It—Using Single-Word Selection-Expressions
Please select all atoms by typing, select all. PyMOL shows the pink indicator dots over all atoms,
regardless of whether or not the atoms are displayed or enabled. Now, create the empty selection by typ-
ing select none. PyMOL updates the selection such that no atoms are in it. Now, please type
select polymer. Notice that PyMOL has located and indicated with pink dots all polymer atoms.
This single-word selection-expression, polymer, works on proteins and nucleic acids. We already re-
moved the solvent and inorganic atoms, so they’re not present in this session. You can verify that by typ-
ing select solvent and noticing that no atoms were selected.

Now, let’s look at selecting atoms based upon their properties as read in from structure files.

Property Selectors
PyMOL reads files in many formats. Some of the data fields in these formats allow PyMOL to assign
properties to atoms. For example, the PDB file format defines a field for "residue name," which corre-
sponds to PyMOL’s resn single-word selector. PyMOL selects atoms according to these properties using
property selectors and identifiers. The property selectors correspond to the fields in the data files, like
residue name, and the identifiers, like resn STU, correspond to the target words or to match or the target
numbers to compare. The most common property selectors are shown in Table PS1. Frequent user of
PyMOL are suggested to memorize the contents of Table PS1.

Let’s sample some common property selectors. Then, we will follow by combining these property selec-
tors with single-word selectors to create more useful customized selections.

Property
Selector

Abbreviated
 Form

Description

name n. list of up to 4-letter codes for atoms in proteins or nucleic
acids; example: name CA

resn r. three-letter residue name; example: resn CYS

resi i. residue identifier (number); example: resi 4

chain c. chain name; example: chain A

ss ss secondary structure (‘s’ or ‘h’ or ‘’); example: ss ‘h’

b b b-factor value; example: b < 30

alt alt alternate coordinates; example: alt ‘B’

Table PS1: Commonly used property selectors.

Intermediate PyMOL

12

Try It—Using Property Selectors
A common task in PyMOL is coloring a protein by secondary structure. Let’s try this by coloring the heli-
ces blue, beta sheets green, and loops red for 1t46. Let’s start by showing the protein as lines only; so
please A→preset→default for 1t46. We will use the color command; it takes a color name and a
selection-expression. Please color the helices blue by typing, color blue, ss ‘h’. PyMOL colors
the helices blue. The last few characters of that command, ss ‘h’ specify all atoms of the secondary
structure type ‘h’ or helix. Now, let’s color the beta sheets green. Please type, color green, ss
‘s’. This colors all beta sheets green; if nothing changed then there are no beta sheets present. Now, let’s
finish by coloring all loops red. The secondary structure code for loops in PyMOL is either the blank
string ‘’ or ‘L’ depending on the PDB file. Please type, color red, polymer and ss ‘’. The
selection expression in that command contains two clauses polymer and ss ‘’, connected by the
boolean operator "and". As you know, the first clause selects all polymer atoms. The second clause selects
all atoms whose secondary structure type matches is blank. The final result is a selection-expression that
selects only those atoms that are polymer and have no secondary structure specified. Let’s see the final
result as cartoons, so please type "as cartoon".

Try It—More Complex Selection Expressions
Before moving on, please show your protein as lines, by typing as lines. Please take a few moments
to type each of the following selections in Table Sel1. Be sure to ask if you don’t know why a given selec-
tion acts as it does. For the last selection in Code MSC.1 show your protein as b-factor putty by clicking
A→Preset→B factor putty for 1t46. The selected atoms should correspond to the size and color of the b
factor putty.

Code MSC.1: Examples of advanced selections

1

2

3

4

5

6

select all carbons and all nitrogens
select n. c or n. n

select all lysines
select resn lys

select residues numbered 646 through 655
select i. 646-655

select all atoms with alternate coordinates

select not (alt ‘’)

select all helices in chain A

select ss ‘h‘ and c. A

select atoms in 1t46 with b-factor greater than 30

select 1t46 and b>30

Intermediate PyMOL

13

Settings
PyMOL has over 700 settings. Unfortunately, getting help for settings is not easy—and in some cases
there is no help for a given setting. In this chapter we will teach you how to use settings, review com-
monly used settings, and provide tips on figuring out what a given setting might do.

Controlling Settings
To get the value of a setting we use the get command. Please type help get and take a moment to
read the documentation. You can get the value of a setting by typing get followed by the setting name;
for example, get cartoon_color. You can change setting values to see how they affect your scene.
If you don’t like the new setting value, just restore that setting to its original value.

To set a value we use the set command. Typical usage is set setting-name, value. If you do
not specify value, the default is 1. For example set ray_opaque_background, 1 and
set ray_opaque_background both set the setting to 1.

There are a few types of setting. Valid values for boolean settings are 0, 1, on, off, true, false. Nu-
meric values can be integral, like -2 or 7, or floating point, like 0.25. String values are usually just text,
like: volume. Color values may be specified by their name, like red, orange or lightblue; by their
PyMOL-specific index, like 30; by their hexadecimal RGB value, like 0xff00ff. There are two possi-
ble way to pass array-type settings: a space separated list, like 0.2 0.5 0.9; or a bracketed, comma-
separated list, like [0.2, 0.5, 0.9]. To see the entire list of settings, click Setting→Edit All...

Try It—Adjusting the Ray Tracing Mode
Please click A→Preset→Ligand Sites→Cartoon for 1t46. To illustrate how settings effect PyMOL, let’s
consider the ray_trace_mode setting. This setting controls the type of post-rendering effects PyMOL
applies to the image, as shown in Figure R1. Please first get the setting by typing, get

Figure R1. The left image shows a ray-traced scene when ray_trace_mode was 0. The right image shows the same image
after ray_trace_mode was set to 3.

Intermediate PyMOL

14

ray_trace_mode. By default it is set to 0. Now, please type ray to ray trace the current scene. Take
note of the image. Now, set ray_trace_mode to 3 by typing, set ray_trace_mode, 3. Please
type ray. Notice the difference between the previous image and the current. When ray_trace_mode
is set to 3, PyMOL applies a post-rendering color quantization step that gives the image a cartoon-like
quality.

Setting Scope
Settings can be applied globally, to objects, or to specific atoms and bonds. You’ve already adjusted a
global setting when you typed, set ray_trace_mode, 3. To adjust a setting for a specific object or
selection simply add the object name after the setting value.

Try It—Creating a Ball-and-Stick Figure by Adjusting Selection-level Settings
Please load the file PyMOLTutorials/IntermediatePyMOL/sessions/settings.pse. To illustrate setting
scope we will create Figure LB1, a figure of a ligand bound to
a protein where the ligand will be shown as ball-and-stick and
the protein as a grey-colored surface. First, we show the entire
system as surface. Second, we select the ligand and show it as
sticks and spheres. Next, we orient the ligand. After that, we
adjust the stick_radius and sphere_scale settings to
create the ball-and-stick representation for ligand. Next, we
color the surface grey. Last, we ray trace the image. Let’s be-
gin.

Please show the system as a surface by typing, as sur-
face. After a few moments, PyMOL shows the protein by its
surface representation—don’t worry if the small molecule disappeared, we’ll get it back; by default
PyMOL does not surface ligands. Next, please select the ligand by typing, select ligand, org.
Now, orient on the ligand by typing, orient ligand. PyMOL zooms on in on the organic small
molecule and aligns it by its principal axes. Now, please show the small molecule as sticks and spheres by

Figure LB1. Ball-and-stick figure made from
customized settings.

Intermediate PyMOL

15

typing the following two commands: as sticks,
ligand, and then, show spheres ligand. Cur-
rently, your screen should look similar to Figure LB2.
The sphere occlude the sticks. We need to adjust the sizes
of the spheres and sticks to perfect the representation. So,
please adjust the sphere scale by typing, set

sphere_scale, 0.25, ligand. The spheres
shrink to a smaller radius. The sticks in the ligand are still
too thick. Let’s make them thinner by typing,
set_bond stick_radius, 0.125, ligand.
Finally, set the surface color to grey by typing, set
surface_color, grey. If you’d like to ray trace
your image click the Ray button or type ray. Your final image should look like Figure LB1.

If you’re ahead of the class, try adjusting a few more settings. Try using the set_bond command to set
the stick_transparency of ligand to 0.5: set_bond stick_transparency, 0.5,

(ligand). Also, try setting the stick_color to lightblue. Last, try enabling valence on the
ligand.

Once you have a slight grasp on the commands, you can begin to write scripts and automate tasks in
PyMOL. Being able to use PyMOL from the command line is a powerful next step in using PyMOL.

Scripted Automation
Scripted automation allows us to use PyMOL’s fairly rich command language to systematically load and
display structures. As an example, some organizations use PyMOL scripting to automate the creation of
PyMOL sessions for storage and distribution of molecular data.

PyMOL scripts are plain text scripts. You can use programs like Microsoft Notepad (Windows), TextEdit
(Mac), or Emacs (Linux) to create and save your scripts. The scripts must be stored as plain text to be
used with PyMOL.

There are two types of script that PyMOL can read and execute. The first is the PyMOL Script. These
end in ".pml" and are run from the PyMOL command line by typing, @my_script.pml. The command
syntax in a PyMOL script is the same as what you would type on the command line. For example, to
show the ligand as sticks, we would enter, as sticks, organic.

The next type of script is a Python Program script. The filename for these scripts ends in ".py" and we
run a Python program script by typing, run my_script.py. Python program scripts use the PyMOL
API and looks slightly different. For example, to show the ligand as sticks, we would type,
cmd.show_as("sticks", "organic"). All PyMOL commands have an API equivalent. Usually
converting to the PyMOL cmd API is simple. For example, if the command you would normally type is

Figure LB2. Ligand shown as spheres and sticks. The
spheres occlude the sticks. We fix this by adjusting the
sphere_scale and stick_radius settings.

Intermediate PyMOL

16

some_command and it takes two arguments arg1 and arg2, which are strings, then the conversion is,
cmd.some_command("arg1", "arg2").

Let’s take a look at some frequently encountered tasks in PyMOL that we can perform using scripting.
Each script discussed here can be found in the PyMOLTutorials/IntermediatePyMOL/scripts directory.

Creating a Custom Preset View
Let’s start scripting by creating a small script that we can apply to a newly loaded protein. It will auto-
matically setup the view to focus on the first ligand in a PDB. We will further customize the view by add-
ing hydrogen bonds to neighbors, setting colors, and labels. In NotePad or equivalent, please load the
script PyMOLTutorials/IntermediatePyMOL/scripts/custom_view.py. The source code for this script
is located in Code CP1. Let's take a moment to discuss the commands that we haven't yet seen.

Code CP1. PyMOL Script to Auto-generate a Custom View (custom_view.py).

1

2

3

4

4

5

6

7

8

9

10

create a named selection for the ligand
select ligand, org

show the ligand as sticks
as sticks, ligand

orient the scene on the complete first small organic molecule
orient bm. first ligand

create a named selection for all atoms with 5 Ang. of the ligand selection

select pocket, poly within 5 of ligand

show the pocket selection only as surface

as surface, pocket

find polar contacts from the pocket to the ligand

distance polar_contacts, poly, ligand, mode=2

set all surfaces to draw as light grey

set surface_color, grey70

make surfaces transparent for polymer atoms

set transparency, 0.5, poly

turn on valences for the ligand

set_bond valence, 1, ligand

position the labels 3.5 Ang. closer to the camera to un-obscure them

set label_position, [0, 0, 3.5]

label the ligand with its name
label first ligand, "Molecule: %s" % (resn)

Line #3, orient bm. first ligand, is the orient command operating on the bm. first
ligand selection. The text, first ligand, selects the first atom in the ligand. The text bm. is

Intermediate PyMOL

17

modifier that stands for "by molecule." It takes the selection that follows it, here, first ligand, and
selects all atoms in the molecular object. We say it completes the molecule for the selection.

Line #5, distance polar_contacts, poly, ligand mode=2, creates polar contacts from
the polymer atoms to the ligand. The code mode=2 tells PyMOL that we're only hunting for polar con-
tacts, not all distances.

Lines #8 and #9 use the set_bond function. Set_bond acts analogously to the set command, except
that it only handles bond-specific settings. Please type help get_bond for more information on this
command.

Line #10 just labels the first atom in the ligand with the text "Molecule: %s." PyMOL will place the %s
with the residue name (resn) field from the PDB. Here, PyMOL takes a trick from Python. Any "%s"
within the label will be substituted with the actual value in the list that follows the string.

To use this script, load any molecule that has a ligand and type: @ custom_view.py.

Creating Your Own Functions
Basic Python programming experience is required for this section.

We've seen how useful scripted automation can be. It can save us time and save us from having to retype
many commands. PyMOL can go one step further. Instead of running the script each time we want to use
it, we can create a Python function and directly call that function from within PyMOL. It's simple and
only requires two steps:

1. Write your code as a function in a Python program script

• make sure you use the extend command to expose your function to PyMOL

2. Run the Python script once, using the run command.

After that, you can use the function just as if it had been built into PyMOL.

As an example of this, we'll look at a script that calculates the center of geometry (COG) of user-defined
selections. After typing, run COG.py, we can simply run the script on any selection by typing:
COG your-selection. For example, COG organic, to get the center of geometry for the organic
small molecule. The commented code that achieves this is in Code Listing F1.

Line #2 imports PyMOL's cmd module. PyMOL stores all of its commands here. Importing this module
gives us access to those commands.

Line #4 imports a special math library that ships with PyMOL. We'll use this library to sum up the atomic
coordinates and determine the center of geometry.

Line #6 creates the new function called COG. COG takes two parameters, selection and quiet. Selection
defaults to "all" which is the selection of all atoms. Quiet defaults to 0, which means PyMOL will print
out the coordinates of the COG each time the command is run.

Intermediate PyMOL

18

Line #8 gets the selected atoms as a chempy model. Chempy is the Python-based chemistry library that
ships with PyMOL.

Line #10 counts the number of atoms in the selection. Line #12 initializes the object that will hold our
summed coordinates.

Line #14 loops over all atoms in the selection and (line #15) adds that atom's coordinates to the summed
coordinates. In Line #17, we divide by the number of atoms, yielding the center of geometry.

Lines #19 and #20 print out the value of the COG if the user wanted to see it.

Line #24 returns the COG as a list to the user.

Code F1. PyMOL Script to Auto-generate a Custom View (custom_view.py).

1
2

3

4

5

6

7
8

9

10

11
12

13

14

15

16

17

18

19

20

21
22

23

24

import the cmd module, all PyMOL-related Python programs should start with this
from pymol import cmd

import a math library from chempy

from chempy import cpv

#define the new function

def COG(selection='all', quiet=0):

 # get the chempy model
 model = cmd.get_model(selection)

 # count the number of atoms

 nAtom = len(model.atom)

 # create the list to store the center of mass
 COM = cpv.get_null()

 # loop over each atom and sum up the X, Y, and Z coordinates

 for a in model.atom:

 COM = cpv.add(COM, a.coord)

 # divide by the number of atoms

 COM = cpv.scale(COM, 1./nAtom)

 # print the results if the user wants to see them

 if not int(quiet):

 print ' COG: [%8.3f,%8.3f,%8.3f]' % tuple(COM)

 # return the center of geometry to the user
 return COM

expose the "COG" function to PyMOL's namespace

cmd.extend("COG", COG)

Now, for the session we have loaded, if I type, COG org, which gets the center of geometry for the or-
ganic small molecule, PyMOL prints:

 PyMOL>COM org

 COM: [9.964, 18.459, -5.100]

COG returns its value in the last line. We can use that value; we could put a marker atom right at that posi-
tion identifying the center of geometry. To do that, we type: cog = COG("org"). This runs the COG
command and returns the value into the variable, cog. Next, we type

Intermediate PyMOL

19

cmd.pseudoatom("cog_org", pos=cog). PyMOL draws a non-bonded atom at the specified
location.

Next Steps
Other Courses
Congratulations on finishing the Intermediate PyMOL tutorial. We hope you enjoyed the lesson and are motivated to
use PyMOL for your molecular visualization, movie-making, scripting, and editing tasks. This isn’t the end, though:
Schrödinger has other courses available covering Moviemaking, and Molecular Editing and Cleanup. Please contact
us for more information on those courses via help@schrodinger.com.

Joining the PyMOL−Users Mailing List
As of Summer 2011, well over 1,500 PyMOL users subscribe to the pymol−users mailing list, which is where the
community exchanges tips on how to use the software effectively and how to solve any problems that come up. To
join the mailing list, please click on the Mailing List link that appears at the top of the PyMOL Home Page,
(http://www.pymol.org). Or, to quickly search the mailing list archives for posts on a specific topic, click the
Mailing List Archive link.

Visiting the PyMOLWiki Community Web Site
The community also runs a "Wiki" dynamic content site that aggregates information from the mailing list and pro-
vides other kinds of PyMOL−related documentation (http://www.pymolwiki.org). PyMOLWiki users can
create their own pymol−related pages, on this site or elaborate upon useful information that is already posted. The
site boasts over 1,300 users, over 7,000,000 page views, is typically accessed between 4,000–6,000 times a day, and
has many useful scripts, plugins and tutorials free for download.

Accessing the Official Documentation Site
PyMOL subscribers access Schrödinger’s Official Documentation site (http://pymol.org/dsc) using the
subscription credentials shown from their most recent PyMOL receipt. This site contains the latest chapters from an
updated PyMOL Manual, an assortment of narrated ScreenCasts, and plenty of reference information to help users
on their way becoming PyMOL experts.

Intermediate PyMOL

20

mailto:support@delsci.com
mailto:support@delsci.com
http://www.pymol.org
http://www.pymol.org
http://www.pymolwiki.org
http://www.pymolwiki.org
http://www.pymol.org
http://www.pymol.org

Indices
Index A: Selection Operators

Single Word Abbreviated
Form

Description

not s1 ! s1 Atoms not in s1

s1 and s2 s1 & s2 Atoms in both s1 and s2

s1 or s2 s1 | s2 Atoms in s1, s2 or both

s1 in s2 Atoms whose identifiers name, resi, resn, chain
and segi all match

s1 like s2 s1 l. s2 Atoms in s1 whose identifiers name and resi
match atoms in s2

s1 gap X Atoms in s1 whose van der Waals radii are
separated from the van der Waals radii of s2 by
at least X Angstroms

s1 around X s1 a. X Atoms with centers within X Angstroms of any
atom in s1

s1 expand X s1 x. X Expands s1 to all atom within X Angstroms of
any atom in s1

s1 within X of s2 s1 w. X of s1 Atoms in s1 within X Angstroms of s1

s1 near_to X of s2 s1 nto. X of s2 Atoms in s1 within X Angstroms of s1, exclud-
ing s2

s1 beyond X of s2 s1 be. X of s2 Atoms in s1 at least X Angstroms from s2

byres s1 br. s1 Expands s1 to complete residues

bymolecule s1 bm. s1 Expands s1 to complete molecule

byfragment s1 bf. s1 Expands s1 to complete fragment

bysegment s1 bs. s1 Expands s1 to complete segment

byobject s1 bo. s1 Expands s1 to complete PyMOL object

bycell s1 bc. s1 Expands s1 to complete unit cell

neighbor s1 nbr. s1 Atoms directly bonded to s1

s1 extend X s1 xt. X Extends s1 by X bonds to s1

Intermediate PyMOL

21

Single Word Abbreviated
Form

Description

pepseq SEQ ps. SEQ Selects the peptide sequence SEQ

Index B: Single Word Selectors

Single Word Abbreviated Form Description

all all All atoms

none none No atoms (empty selection)

solvent sol waters

organic org atoms in non-polymer organic compounds

inorganic ino non-polymer inorganic atoms and ions

polymer poly atoms in a polymer

hydro h. hydrogens

hetatm het heteroatoms

visible v. visible atoms

present pr. atoms with coordinates in the current state

enabled atoms in enabled objects

masked msk. masked atoms

protected prt. protected atoms

bonded bonded atoms

donors don. hydrogen bond donors

acceptors acc. hydrogen bond acceptors

fixed fxd. fixed (unmovable) atoms

restrained rst. harmonically restrained atoms

Intermediate PyMOL

22

Index C: Property Selectors

Single Word Abbreviated Form Description

symbol e. Elemental symbol

name n. Elemental name

resn r. Residue name

resi i. Residue number (identifier)

alt alt Alternate coordinates

chain c. Chain

segi s. Segment identifier

flag f. Flag number

numeric_type nt. Numeric representation of atom type

text_type tt. Text representation of atom type

id id External index number

index idx. Internal index number

ss ss Secondary structure type

b b B-factor value

q q Occupancy value

formal_charge fc. Formal atomic charge

partial_charge pc. Partial atomic charge

Intermediate PyMOL

23

