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Drug discovery is a challenging multi-objective pro-

blem where numerous pharmaceutically important

objectives need to be adequately satisfied for a solution

to be found. The problem is characterized by vast,

complex solution spaces further perplexed by the pre-

sence of conflicting objectives. Multi-objective optimi-

zation methods, designed specifically to address such

problems, have been introduced to the drug discovery

field over a decade ago and have steadily gained in

acceptance ever since. This paper reviews the latest

multi-objective methods and applications reported in

the literature, specifically in quantitative structure–

activity modeling, docking, de novo design and library

design. Further, the paper reports on related develop-

ments in drug discovery research and advances in the

multi-objective optimization field.

Introduction

Research in multi-objective optimization (MOOP) technolo-

gies has experienced a major resurgence during the last two

decades mostly because of the pressing needs of numerous

scientific communities dealing with problems searching for

solutions when multiple objectives exist [1]. MOOP technol-

ogy was introduced to drug discovery informatics more than

a decade ago and has since steadily gained acceptance. Its
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introduction challenged widely accepted practices aiming to

optimize pharmaceutically relevant objectives one at a time,

typically starting with potency. Reviews on the topic first

appeared in [2] describing the use of MOOP in quantitative

structure–activity relationship (QSAR) models, molecular

docking, molecular library design and de novo design among

others. Following those early attempts, research in the

domain has produced numerous examples of methods and

applications developed specifically to address the needs of the

drug discovery researcher. This paper builds on previous work

by the authors to review recent literature and document the

main achievements in the field in recent years. Multi-objective

optimization and chemoinformatics section introduces funda-

mental MOOP concepts, recent methodological advances

and briefly discusses earlier applications and prior reviews

in drug discovery. The following sections review a represen-

tative selection of MOOP methodology applications in che-

moinformatics. The final section of the paper presents

our conclusions and comments on MOOP and its future in

the field.

Multi-objective optimization and chemoinformatics

Multi-objective problems (MOP) are characterized by the

presence of two or more primary objectives that solutions

must satisfy. The score of each solution in a MOP consists

of a vector whose dimensionality is equal to the number

of objectives considered. In contrast to single-objective
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Figure 1. Identifying optimal solutions in the presence of multiple

objectives requires the identification of non-dominated solutions that

compromise best the objectives considered. The label to each

solution refers to the number of other solutions that dominate them,

that is, that have better scores in all objectives considered. Non-

dominated solutions are labeled with zero.
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Figure 2. Sequential single-objective optimization of conflicting

objectives often results in rounds of trial and error and a waste of

resources and time (dashed line). Multi-objective optimization

methods simultaneously search the solution space for satisfactory

compromises to all objectives thus enabling faster convergence (bold

continuous line) (adapted from [3]).
problems, where ranking candidate solutions is trivial (i.e.

simple sort on the scalar objective value), ranking the candi-

dates in a MOP is more challenging because of conflicting

objective values. MOPs have multiple equivalent solutions,

the so-called Pareto or non-dominated solutions, which

represent different compromises of the various objectives

(see Fig. 1). Pareto-ranking is the process of determining

the rank of each solution through identifying the number

of other solutions that dominate it, that is, the number of

solutions that have better scores in all objectives considered.

Pareto solutions have rank 0; all other solutions are given as

rank the number of other solutions that dominate them in all

objectives.

Traditionally, MOPs have been simplified by considering

only one of the present objectives, typically, the one con-

sidered most important such as potency for drug discovery

problems. This led to longer optimization cycles that

attempted to address each objective sequentially often realiz-

ing that decisions taken earlier produced solutions that failed

to meet the criteria imposed later and therefore required

revisiting [3]. This realization led to the design of optimiza-

tion techniques specifically developed to address MOPs by

addressing all of the objectives simultaneously, the so-called

multi-objective optimization methods (MOOP). In drug dis-

covery, candidate molecules are modeled in multiple objec-

tives and novel chemical entities subsequently prioritized for

synthesis (Fig. 2).

Initially, the MOOP method of choice was to combine all

objectives into one, for example, by a weighted sum

approach, and transform the problem to a single objective

one [2]. This aggregation approach enables the use of existing

optimization techniques designed to address single objective
e428 www.drugdiscoverytoday.com
problems at the expense of producing a single solution of the

Pareto set which may or may not be appropriate for all

objectives. More recent implementations of this approach

use desirability functions to define a candidate solution

desirability index based on the individual objective scores

and, thus, reduce the complexity of the problem [4]. Pareto-

based methods where the aim is to obtain the set of solutions

on the trade-off surface between all objectives in a single run

have also been introduced. The benefit of these methods is

found in improved overall efficiency and in avoiding local

minima related to each objective [2]. The challenge they face

is the identification of a set of solutions effectively represent-

ing the true Pareto set. Interactive methods represent an

alternative approach that requires user intervention during

the optimization process. In effect, these methods use expert

users in the place of the ranking and selection mechanisms

used by fully automated techniques.

The presence of numerous objectives typically results in

large complex solution spaces for MOPs. Consequently,

most optimization methods used in MOP research resort to

(meta-)heuristics that can provide a sufficiently good solution

set in a reasonable amount of time. Most commonly, itera-

tive, population-based approaches are used, for example,

Evolutionary Algorithms (EA) [1].

Early implementations of Pareto-based methods were sim-

ple extensions of single objective optimization techniques

complemented with Pareto-ranking. For example, in EAs,

where solutions are identified through an iterative process

combining individual fitness assessment, selection and repro-

duction, multiple objectives were handled by the addition of
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Figure 3. Solution diversity in decision and objective spaces:

Solutions (represented by circles) of a multi-objective problem are

mapped from decision space to objective space through objective

functions. Proximity of solutions in objective space is not related to

solution similarity in the decision space and vice versa.
a Pareto-ranking step. Intense research efforts have since led to

several improvements. Secondary populations known as Par-

eto-archives, have been introduced in an effort to ensure that

no non-dominated solution is lost during the optimization

process [5]. Niching techniques aiming at the preservation of

solution diversity in objective space have also been widely

used [6]. More recently, the issue of population diversity in
Table 1. Summary table.

Reference MO type Search meth

Quantitative structure–activity relationships

Nicolotti et al. (2009) Pareto-based Evolutionary (g

MO-QSPR: Manoharan et al. (2010) Desirability,

aggregative

Expert-driven 

Soto et al. (2009) Pareto-based

and aggregative

Evolutionary (g

Hii et al. (2011) Pareto-based Evolutionary (g

MTAR: Bajorath et al. (2012) Visualization Interactive, ex

DAD/TAD: Medina-Franco et al. (2011) Visualization Interactive, ex

Docking

Mardikian et al. (2007) Pareto-based Evolutionary (g

Boisson et al. (2008) Pareto-based Evolutionary (g

MOSFOM: Li et al. (2009) Pareto-based Evolutionary (g

De novo design and inverse QSAR

MEGA: Nicolaou et al. (2009) Pareto-based Evolutionary (g

PLD: Ekins et al. (2010) Pareto-based Evolutionary (g

Molecule Commander:

van der Horst et al. (2012)

Desirability and

Pareto-based

Evolutionary (g

MOLig: Sengupta et al. (2012) Pareto-based Simulated anne

Library design

Sharma et al. (2011) Weighted-sum,

aggregative

Deterministic 

MEGALib: Nicolaou et al. (2011) Pareto-based Evolutionary (g
parameter space has been gaining attention because several

scientific domains, including drug discovery, are interested in

producing solutions that differ [7] (Fig. 3).

In the field of chemoinformatics MOOP techniques were

adopted early on because of the requirements of drug dis-

covery. Drugs are essentially molecules with a pharmacolo-

gical profile that compromises numerous relevant objectives

including potency, selectivity, pharmacokinetics and toxicity

[8]. In line with the evolution of the field the first applications

used composite MOOP methods and, soon after, Pareto-based

methods using algorithms developed for other fields. Since

then several applications spanning nearly all domains of

computational chemistry and chemoinformatics have been

reported that feature more advanced methods, often custom

designed to drug discovery process requirements. A detailed

overview of recent MOOP technology applications in this

field is presented below with some emphasis placed on Par-

eto-based methods. A review on earlier MOOP applications in

the field can be found by the same authors in [2] and also in

[9] among others. Table 1 summarizes selected, representative

applications.

Quantitative structure–activity relationships

Since first proposed in the 1960s, Quantitative Structure–

Activity Relationship (QSAR) models have gained widespread
od Remarks/objectives

enetic) algorithm Selection of docking poses for

3D QSAR model construction

search, desirability plot QSAR and QSSR models

enetic) algorithm Feature selection for QSAR

model construction

enetic) programming In silico toxicity prediction;

‘goodness-of-fit’, model complexity

pert-driven visual inspection Multiple target activity

pert-driven visual inspection Two or three target activities

enetic) algorithm Protein-ligand bonding;

van der Waals interactions

enetic) algorithm Energy, surface

enetic) algorithm Energy, contact

enetic) algorithm Ligand and target based objectives

enetic) algorithm Predicted activity, ADME related properties

enetic) algorithms High predicted affinity, pharmacophore

model, predictive models

aling Internal energy, target interaction,

similarity to scaffold, oral bioavailability

annealing Diversity, representativeness

of compounds

enetic) algorithm Selectivity between related targets
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Table 1 (Continued )

Reference MO type Search method Remarks/objectives

Venhorst et al. (2010) Pareto-based Evolutionary (genetic) algorithm Structural diversity, chemical tractability, etc.

MSDS: Meinl et al. (2011) Composite,

aggregative

Iterative, greedy search Activity, representativeness of compounds

CNS MPO: Wager et al. (2010) Desirability,

aggregative

Multi-parameter optimization Fundamental physicochemical parameters (6)

MO-PSO: Namasivayam et al. (2012) Pareto-based Particle Swarm Optimization SAR discontinuity index; ADME-related

properties
acceptance by the drug discovery community. QSAR models

associate molecular descriptors to biological properties using

statistical techniques and/or computational intelligence

algorithms. Typically, QSAR models have been used for inter-

pretation purposes, that is, to identify structure–activity rela-

tions in the available data. A second use has been as predictive

models, that is, for the prediction of the biological property of

new, untested chemical structures. MOOP techniques have

been used in QSAR modeling in the past decade starting with

MoQSAR which considered several conflicting objectives,

including model accuracy and complexity, using a multi-

objective genetic programming method and Pareto ranking

[10].

In [11] a multi-objective genetic algorithm for the selection

of appropriate docking poses for building 3D QSAR models is

proposed. The method optimizes two objectives, namely the

correlation of docking scores to biological activity and the

averaged root mean squared deviation with respect to a

defined co-crystallized inhibitor. The set of equivalent QSAR

models produced are subsequently clustered and a represen-

tative set is selected. The method was successfully applied to

the analysis of a well-known dataset that the authors had

previously examined using other approaches. The results

showed that the method was very effective overall and, in

particular, the generation of trade-off 3D QSAR models with

good sensitivity [11].

Manoharan et al. propose the multi-objective QSPR (MO-

QSPR), which in combination with FB-QSAR, a fragment

based QSAR methodology, is used for data interpretation

and the design of new compounds [12]. The method is based

on the preparation of QSAR models, the calculation of indi-

vidual desirability functions and their combination via geo-

metric mean. Next, a desirability plot is used to identify the

optimal value ranges of descriptors that have major influence

on predicted responses and, thus, support the interpretation

of the available biological data. The authors also used the

results of MO-QSPR to select specific fragments with optimal

descriptor values and suggest promising analog designs that

compromise activity and selectivity.

MO technology has also been applied to the problem of

feature selection (FS) for QSAR models in [13]. The authors

propose a two-step approach, consisting of the MO wrapper

step, which performs feature searching and feature subset
e430 www.drugdiscoverytoday.com
evaluation, and the validation step. In the MO wrapper step, a

collection of multi-objective techniques, including aggrega-

tion and Pareto-based methods are used for feature subset

searching. The authors report a detailed analysis of the pro-

posed methods and an extensive comparison with other

methods reported in the literature to conclude that the

utilization on MO technology in either form is advisable

for the problem of FS in the QSAR field.

Hii et al. presented a multi-objective method for the in silico

prediction of toxicity [14]. The method uses a multi-objective

Genetic Programming (MOGP) implementation to maximize

the ‘goodness-of-fit’ to data and minimize the model com-

plexity. In particular, the method combines the multi-gene

symbolic regression variation of genetic programming with a

widely used MOEA. Results on a publicly available aqueous

toxicity dataset demonstrate that the proposed approach

generates compact QSAR models with comparable perfor-

mance to models reported in the literature [14].

Several visual SAR analysis applications have been devel-

oped recently, initially for the identification of ‘activity cliffs’

(i.e. structurally similar compounds with significantly differ-

ent biological activity on a specific target) [15], and later

expanded to a higher order data structure, the so-called

‘activity ridge’, combining possible pairwise activity cliffs

formed across subsets of structural analogs of varying potency

[16]. While the initial focus of both activity ‘cliffs’ and ‘ridges’

has been single target SAR they have been modified to

accommodate multiple activities such as those resulting from

polypharmacology/multi-target drug discovery projects. A

successful application to the analysis of large, publically

available multi-target datasets has been reported in [17].

Gupta-Ostermann and Bajorath [16] introduced the Multi-

Target Activity Ridge (MTAR) concept and applied it to the

analysis of a high-dimensional kinase inhibitor data set. The

authors report that the method successfully identified several

MTARs in the dataset each consisting of numerous com-

pounds with target differentiation potential. In a parallel

effort, Medina-Franco et al. report on the development and

application of the Dual and Triple Activity-Difference (DAD/

TAD) maps that approach the activity landscape generation

problem by first representing pairwise activity differences for

all compounds in a data set and then overlaying structure

similarity information [18]. The authors have applied this
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technique for the characterization of the multi-target SAR of

299 diverse compounds on three monoamine transporters.

As evident by the numerous methods described above, the

need for consideration of multiple objectives in QSAR has

clearly been realized. MO techniques are used to select fea-

tures in an effort to use the best possible subset of descriptors,

and, to develop models compromising multiple objectives.

Custom MO techniques are also developed to enable visual

SAR analysis of multi-target datasets. The advent of poly-

pharmacology and multi-target drug discovery seems to be

further contributing to the application of MO technology in

QSAR, a trend that can only increase given recent develop-

ments in the field [19].

Docking

Given a protein structure of interest it is possible to predict

potential binding modes of small molecules for which the

binding modes are unknown. The optimization process

explores the translation and rotation of ligand conformations

in addition to the potential conformers that the ligand may

adopt in three-dimensional (3D) space. The search space of

possible solutions is vast and the methods by which the poses

are scored are important to effectively search that space and

appropriately rank the results. MOOP approaches are applied

to the scoring and ranking of each of the potential docking

poses. The benefit of applying MOOP is to reach a family of

global optima more rapidly and with results that more appro-

priately consider the parameters that are important for scor-

ing binding modes.

Each docking pose may be scored using a multitude of

parameters. Indeed, many of the commonly applied scoring

functions are combinations of parameters oftentimes

weighted according to empirical scores of significance. The

original scoring function in GOLD (Genetic Optimization for

Ligand Docking), GoldScore, includes several terms, includ-

ing: van der Waals (vdW) interaction between the protein

and ligand atoms; the internal energy of the ligand (vdW and

torsion, with internal H-bonding if required) and the H-bond

interaction energy between the protein and the ligand, giv-

ing:

GoldScore ¼ ½protein-ligand H-bond� þ ð1:375

� ½protein-ligand vdW�Þ þ ½ligand internal�

However, these consider each of the terms as a combined

function, for which the limitations have been covered

already.

The non-dominated sorting genetic algorithm (NSGA) was

developed by Deb (2000) [6] and later applied to drug dis-

covery problems including ligand docking. NSGA-II is an

approach to overcome the computational complexity of

many other multi-objective algorithms that tend to

O(MN3). There is also a recognized lack of elitism strategies
and the need to specify a sharing parameter to ensure an even

distribution of equivalent solutions. Mardikian demon-

strated that applying the vdW interactions and the combined

electrostatic and hydrogen bonding between the protein and

the ligand in a bi-objective system (S. Mardikian, PhD Thesis,

The University of Sheffield, 2007). The bi-objective NSGA-II

algorithm applied in this study re-capitulated experimental

crystallography in several test cases of varying difficulty. The

work found that consideration of the docking results could

assist in understanding how the terms can affect docking

success. The key finding was the interpretation of which

parameters are most significant in docking for different sys-

tems thereby permitting the optimization of the docking

methodology in the diagnostic mode that could then be used

to apply term weightings to be used in the prognostic mode.

The work of Boisson et al. [20] again apply a bi-objective

scoring function in a genetic algorithm for ligand docking,

this time using terms for energy and surface. This work uses

the NSGA-II algorithm as before, but also considers the

Indicator-Based Evolutionary Algorithm (IBEA) [21]. IBEA

was found to out-perform NSGA-II in this application, which

confirms results from other applications of IBEA in the lit-

erature.

More recently, Li et al. [22] reported a multi-objective

docking algorithm, Multi-Objective Scoring Function Opti-

mization Methodology (MOSFOM), combining two scores:

energy and contact from the DOCK program [23]. The

method uses Pareto ranking and is demonstrated to out-per-

form single scoring functions, particularly in the enrichment

of actives in the top 2% of recalled compounds.

The development of appropriate scoring functions for

small molecule docking challenges remains an active area

of research. Several approaches have investigated multi-

objective scoring functions. Through the optimization of

families of solutions that populate the trade-off surface in

solution space, it is possible to more appropriately select

optimal solutions. Multi-objective methods obviate the need

for weightings in the functions that, because they are derived

empirically, are not appropriate for all model cases. It can

only be expected that multi-objective scoring functions will

be the focus of continued interest in ligand docking to further

improve docking performance.

De novo design

De novo design is an effort to design chemical compounds

using knowledge on the pharmaceutical target site or its

available ligands [2]. To design products that are truly of

interest to the drug discovery researcher several additional,

pharmaceutically important objectives should be taken into

account, including selectivity to the specific target, pharma-

cokinetic properties, synthetic accessibility, etc. Following

the introduction of MOOP technology in [24] several new

methods have appeared in the literature.
www.drugdiscoverytoday.com e431
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Nicolaou et al. described MEGA (Multi-objective Evolution-

ary Graph Algorithm), a method which combines evolution-

ary algorithms with local search techniques [7]. MEGA

initially applies all available objectives on an initial set of

compounds to obtain a list of scores for each individual.

Individual Pareto-rank and population diversity are calcu-

lated with the latter given special consideration through the

implementation of a clustering process operating in para-

meter space, directly on the chemical structures. Parent solu-

tions are sampled from each cluster using individual ranking

thereby ensuring the selection of diverse molecules. New

solutions are generated using graph-specific mutation and

crossover. MEGA also introduced the use of Pareto archive to

preserve all promising solutions found throughout evolution

[5]. Experimental results on the design of selective Estrogen

Receptors have shown the ability of the method to generate a

diverse set of compromising solutions covering the Pareto-

front [7]. Kruisselbrink et al. also addressed the issue of

diversity in parameter space through the use of a crowding

operator based on compound similarity measurements to

evolve structurally diverse niches of molecules [25].

A similar approach is followed by Ekins et al. who report on

the development of the Pareto Ligand Designer (PLD) [26].

The method takes as input a set of reference molecules and

calculates objective values that are used for defining indivi-

dual Pareto-ranks. Non-dominated solutions are identified

and stored in a Pareto-archive. In a next step, the working

population is evolved using an extensive set of molecular

transformations and the molecules that survive a number of

property filters form a new working population. The process

then iterates to calculate Pareto-rank and non-dominated

solutions and continues until some completion criteria are

met. The authors present results from the application of PLD

to optimization experiments of two, three and four objec-

tives, while maintaining biological activity [26].

Recently van der Horst et al. described a MOEA method

they call Molecule Commander and applied it to generate

potential A1 adenosine receptor antagonists [27]. The

method used multiple objectives including a pharmaco-

phore model and support vector machine models based on

molecular fingerprints for subtypes of adenosine receptor.

The objectives were grouped into logical groups by means of

desirability indexes to reduce the dimensionality of the

problem. Pareto ranking was used in combination with

niching to select the compounds to be used as input for

the next generation cycle. It is worth pointing out that the

niching process used employs clustering in parameter space

to ensure the selection of diverse chemical structures. Similar

to the methods described above, new structures are devel-

oped using molecular perturbation techniques. Thresholds

on physicochemical properties as well as chemical rules were

used to as hard filters to remove compounds with an unde-

sired profile.
e432 www.drugdiscoverytoday.com
In [28], MOLig, a method using multi-objective simulated

annealing is presented. MOLig represents solutions using a

tree-like structure and employs a collection of solution per-

turbation operators such as substitution, deletion, extension

and shuffling to generate new chemical designs. In the cited

example, MOLig was used to simultaneously optimize the

internal energy of a candidate, its interaction energy with the

given target, its chemical similarity to a reference scaffold and

its oral biovailability. The authors report that the method was

compared to several de novo design methods and was found to

outperform them [28].

DND has long been criticized for generating unrealistic and

unattractive chemical designs, that is, impossible to synthe-

size or with obvious pharmaco-chemical issues. As a response

the DND community adopted MO technology early on to

incorporate additional pharmaceutical objectives and, thus,

produce compounds with an acceptable overall chemical

profile. This trend has been steadily increasing in recent years

and numerous innovative methods have been introduced

with varying success. Currently, the use of MO technology

and the inclusion of multiple objectives in the design process

in one form or another is the norm; it is our firm belief that

this will remain the case in the future with added emphasis

placed on new objectives relating to synthesizability and

chemical novelty.

Library design

Typically, molecular modelers and medicinal chemists have

far more design ideas than they could possibly realize in

synthesis. Historically, exploration of the virtual libraries

without enumeration has essentially proceeded as a local

search, making small changes. It is important to however

consider the space of compounds that could be synthesized to

understand what modifications may result in beneficial end-

points, such as potency, anti-targets, toxicity, solubility and

many more.

Computational molecular library design (MLD) aims at

designing a collection of chemical products given a starting

set of chemical structures and a set of objectives reflecting the

desired characteristics of the resulting library. The method

has two variations. In the first, the starting set of chemical

structures consists of chemical reagents and rules to guide the

virtual synthesis of chemical products (see Fig. 4). Alterna-

tively, the initial set may consist of large libraries of real or

virtual compounds. A typical goal in both cases is diversity,

that is, obtaining a collection of products representative of

the chemical space accessible by the input provided. Other

common objectives include QSAR and QSPR models and drug

likeness, often imposed to focus the resulting library to

specific regions of the chemical space more relevant to the

targeted drug discovery problem. A frequent problem is

the possible generation of far too many virtual products

that meet the imposed objectives. Sampling methods and
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Figure 4. Schematic workflow of virtual library design and enumeration of compounds to be prioritized for synthesis. Predictions are made from relevant

models and these values prioritized using a multi-objective prioritization strategy such as weighted-sum or Pareto ranking. The prioritized compounds may

then be synthesized and tested and the results analyzed before cycle beginning again.
physicochemical filters can be used to reduce the number

appropriately.

Multi-objective methods are often used for library design to

balance the numerous objectives with the majority of them

following the weighted-sum approach [2]. Pareto-based

methods were first introduced with MoSELECT [29] which

aimed to simultaneously address multiple objectives such as

diversity, physicochemical properties and ease of synthesis.

The method was proven effective at designing combinatorial

libraries consisting of families of equivalent solutions for

both diverse and focused library designs [29].

More recently, Sharma et al. proposed an algorithm that

addresses simultaneously the two objectives of diversity and

representativeness of compounds in the resulting library [30].

The method applies a deterministic annealing algorithm to

identify clusters and truncate computations over the entire

dataset to computations over individual clusters. Experimen-

tal results on lead-generation design problems show signifi-

cant improvement and demonstrate the efficiency of the

method. The authors have also performed an extensive
analysis to quantify the trade-off between the error because

of truncation and the computational effort [30].

Nicolaou et al. presented an extension to the MEGA de

novo design algorithm, termed MEGALib, custom-designed

to the library design problem [31]. The method uses MEGA

but only takes fragments as building blocks and, by default,

applies a set of well defined chemical rules for molecular

synthesis. The fragments used by MEGALib contain infor-

mation on reaction points to facilitate virtual synthesis and

may be profiled using results from previous biological

screening experiments to assign weights taken into account

during virtual synthesis. The authors describe an applica-

tion for the design of a focused library consisting of a

diverse set of compounds meeting objectives associated

with selectivity.

Venhorst et al. employed multi-objective optimization in

the design of a diverse, high-efficiency fragment library from

existing sources [32]. The authors generated pharmacophore

models on a variety of targets and used them to select

fragments from a virtual library of enumerated organic
www.drugdiscoverytoday.com e433
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molecules. Several properties of the candidate scaffolds were

computed including structural diversity, chemical tractabil-

ity and scaffold redundancy and Pareto-based optimization

was used to select the final fragment library. The authors

report usage of the library in virtual screening experiments

and the identification of novel entities with high similarity to

known inhibitors of the same target [32].

Meinl et al. present an interesting study of computational

multi-objective methods that aim to select compounds

from existing sources that are both diverse and, addition-

ally, take molecular properties (e.g. activities) into account

[33]. They propose the Maximum-Score Diversity Selection

(MSDS) method which uses the ‘erosion’ concept to itera-

tively calculate a composite score for each individual mole-

cule which, in turn, is used to determine the next selection

of compounds. In the first iteration, the score simply con-

sists of the activity of the molecules and in each of the

following iterations scores of the remaining compounds are

re-calculated and ‘eroded’ in proportion to the distance of

each molecule to the ones already selected. The authors

compare MSDS with implementations of various methods

proposed in the literature, including a Pareto-based MOEA,

on bi-objective problems. Their conclusions indicate that

the proposed method is computationally far more efficient

but at the same time produces comparable results to the

MOEA.

Wager et al. present a new multi-parameter optimization

(MPO) method which uses six fundamental physicochemical

parameters to aid in the design of libraries for central nervous

system (CNS) research [34]. The method, termed CNS MPO,

constructs a desirability score for each of the six properties

and a composite desirability score using summation. Desir-

ability score ranges of optimal, less optimal, and undesirable

values for CNS agents are defined for each property based on

expert chemist input and validated on known CNS agents.

CNS MPO attempts to balance the properties considered and

account for the comprehensive profile of a compound. The

authors report on tests that indicate that the method may be

used as a design tool to identify compounds with a higher

probability of success [34].

Recently, Namasivayam and Bajorath described the appli-

cation of a multi-objective Particle Swarm Optimization (MO-

PSO) method to identify compound subsets from a larger set

meeting several criteria [35]. The method combined PSO, a

population-based EA that mimics the movement of birds in a

flock [36], with Pareto ranking to optimize the selection of

compound subsets. The objective functions used include a

SAR discontinuity index derived from known activity values

of the dataset under investigation and functions based on

ADME-related molecular properties. Experiments on 10 data-

sets with varying SAR information content demonstrated

that compound subsets with desired SAR and property dis-

tributions subsets can be extracted using the proposed
e434 www.drugdiscoverytoday.com
method, provided that such compounds exist in the original

dataset [35].

Library design has probably experienced the larger pene-

tration of MO technology in recent years with an increasing

number of publications describing MLD applications taking

into account multiple objectives. As the body of pharmaceu-

tical knowledge has increased to include multiple target

activities for specific compound sets and numerous predictive

ADME models, MLD methods have evolved accordingly. This

evolution will surely continue as ongoing developments will

only make available more pharmaceutical data and computa-

tional models that can improve the quality of molecular

libraries if properly used.

Conclusions

Drug discovery is inherently a multi-objective problem

although, in previous years, it has been addressed in a sequen-

tial one-objective-at-a-time manner both experimentally and

in silico. Recognition of this attribute, supported by techno-

logical advances in recent years, has caused a paradigm shift

to commonly consider multiple pharmaceutical endpoints in

parallel from the beginning of pharmaceutical projects.

Nowadays, MOOP methodologies are frequently used

[8,9,26] and whole projects aiming for a new type of drugs,

those with a designed polypharmacology profile are initiated

[19,37].

In our previous review over five years ago we stated in our

conclusions that ‘we anticipate that in the near future the

pace of MOOP methodology adoption will increase consider-

ably, and that standard chemoinformatics techniques will

regularly be applied with the simultaneous optimization of

multiple properties of interest to the discovery of new drugs’

[2]. Clearly, the drug discovery community is still experi-

menting with the technology and more custom methods and

applications need to be developed. However, major advance-

ments have already been made and the methodology has

proven its usefulness to a significant portion of researchers in

the field. At an institutional level, a paradigm shift is already

ongoing leading to a new, multi-objective optimization

approach as indicated by the multi-target drug discovery

initiative. The development of new tools to assist molecular

modelers and medicinal chemists select their most appropri-

ate candidates for synthesis has also begun and can only be of

assistance to these scientists in understanding more fully the

trade-off surfaces that are being explored in their design ideas.

We firmly believe that this path forward will continue in

the coming years and that additional achievements, espe-

cially in newer more challenging drug discovery fields, will

continue to be reported.
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