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ABSTRACT 

A Gaussian description of molecular shape is used to compare the shapes of two 
molecules by analytically optimizing their volume intersection. The method is 
applied to predict the relative orientation of ligand series binding to the 
proteins, thrombin, HIV protease, and thermolysin. The method is also used to 
quantify the degree of chirality of asymmetric molecules and to investigate the 
chirality of biphenyl and the amino acids. The shape comparison method uses 
the newly described shape multipoles that can also be used to describe the 
inherent shape of molecules. Some results of calculated shape quadrupoles are 
given for the ligands used in this work. 0 1996 by John Wiley & Sons, Inc. 
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Introduction 

he shape of a molecule is an important con- T sideration in the design of selective ligands 
for protein and DNA binding. The well known 
lock-and-key hypothesis requires a degree of shape 
complementarity between ligand and receptor. On 
the other hand, a set of different ligands that all 
bind to the same receptor site, giving rise to a 
similar pharmacological response, is expected to 
possess a degree of molecular shape similarity. TO 
exploit such shape similarity an increasingly use- 
ful tool for rational drug design in medicinal 
chemistry is the method of molecular shape com- 
parison (MSC) that compares the shape of two or 
more molecules and identifies common spatial fea- 
tures. It is hoped that such comparisons can lead 
to alternative pharmacophoric models in the pro- 
cess of ligand design. A recent' analytical method 
provides a measure of shape similarity and a way 
to align molecules such that it is maximized. Ap- 
plication of this method to conformationally flexi- 
ble angiotensin receptor antagonists identified an 
experimentally deduced pharmacophore model, as 
well as several attractive alternative models. The 
method itself makes use of the most widely used 
description of molecular shape2-5 that treats a 
molecule as a set of intersecting spheres. The ex- 
posed surface of these spheres defines the bound- 
ary of a molecular volume. However, the actual 
concept of molecular shape is not so trivial. The 
complexities and various mathematical treatments 
of this subject are thoroughly discussed in a recent 
treatise by Mezey.6 Here it is emphasized that 
a rigorous treatment of molecular shape should 
reflect the quantum nature of molecules, and rep- 
resent the fuzzy nature of electron charge distribu- 
tions. The molecular shape complementarily in- 
voked by the lock-and-key approximation, can be 
understood by considering the dominant role 
played by the overlap of the peripheral regions of 
the electron charge distribution. As soon as there is 
any significant overlap of charge distribution the 
potential energy becomes strongly repulsive. The 
peripheral regions of the electron density are 
therefore very important in assessing the steric 
effects critical in molecular recognition. 

To improve the hard-sphere model, we recently 
introduced7 a computationally efficient Gaussian 
description of molecular shape, which makes use 

of a generalized coalescence theorem, to compute 
analytical formulae for molecular volumes, areas, 
end their nuclear coordinate derivatives. This 
model accounts for the inherent softness (or fuzzi- 
ness) associated with electron charge distributions, 
without being a complex quantum mechanical 
treatment. In this work we report on the applica- 
tion of this model to the problem of molecular 
shape comparison, intended to efficiently find the 
optimal shape similarity between two molecules. 
An objective of this method is to predict if a 
molecule with a chemical skeleton different from a 
known ligand possesses the relevant degree of 
shape similarity to be considered as a putative 
ligand for a receptor (probably of unknown struc- 
ture). 

The utility of the Gaussian function, in particu- 
lar the product theorem, the simple analytical na- 
ture of integrals over all space, and the continuity 
of derivatives: have long been recognized. We 
briefly describe some relevant applications of the 
Gaussian function in chemistry. Our model bor- 
rows heavily from the ideas introduced to quan- 
tum chemistry by Boys? in which Gaussian func- 
tions were used to represent atomic orbitals. An 
empirical Gaussian model of electron density was 
devised by Diamond" as part of a real space 
refinement procedure to determine protein struc- 
tures. A very similar representation of molecular 
electron distributions was implemented by Mar- 
shall and Barry," as part of the active analog 
approach to deduce pharmacophoric patterns from 
pharmacological data." It is well known that given 
a fairly smooth function that vanishes rapidly, it is 
possible to obtain a reasonably accurate expansion 
in terms of a number of Gau~sians.','~ This prop- 
erty has been used to represent the conventional 
Lennard-Jones potential by expanding the func- 
tions r -I2  and r W 6  in terms of a linear combina- 
tion of truncated Gau~sians.'~ Such a representa- 
tion leads to a convenient analytical solution of the 
diffusion equation, and hence a route to globally 
optimizing the structures of atom cluster~'~ and 
~ligopeptides.'~ The inverse distance dependence 
of the electrostatic potential ( r - ' )  has also been 
expanded as a linear combination of Gaussian 
functions as part of a method to compare the 
electrostatic potentials of different molecules.'6 
There are a number of analytical and numerical 
methods to seek relative orientations of molecules 
that maximize similarity in some molecular prop- 
erty such as steric shape, electrostatic potential, 
hydrophobocity, and lipophilicity. There are excel- 
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lent recent reviews of these techniques by Dean,17 
Good," and Klebe," and in a couple of these 
methods Gaussians play a central role in the align- 
ment function. SEAL2" (steric and electrostatic 
alignment method) uses an empirical function in 
which a Gaussian (alternatively a Lorentzian) at- 
tenuates a property-weighted contribution of all 
atom pairs between two structures. The very inno- 
vative and elegant work of Hodgkin et a1.16 Good 
and Richards21 uses atom centered Gaussian func- 
tions to approximate ab initio electron densities, 
and using this model analytically aligns molecules 
by optimizing the Carbo index using a simplex 
procedure. 

Theory and Methods 

The Gaussian model of molecular shape7 uses a 
representation in which each atomic site i with 
coordinates R ,  = ( X l , Y l , Z j ) ,  is given by a spheri- 
cal Gaussian 

where the local coordinate 

is defined as a distance vector from the atomic 
center, and the exponent 

(3) 

is defined using a parameter, ui, which is loosely 
speaking the "radius" of the atom. The dimension- 
less parameter K~ can be chosen such that 

(4) 

in which case the "atomic volume" of center i is 

4rr 
v , g  = dri p$(ri) = ---cT.~ 1 3 " 

(5) 

provided we choose the Gaussian weight ( p i >  such 
that 

4rr 

3 (6 )  p , A .  = - *  
1 1  

We emphasize that the integral appearing in (5) is 
a volume integral (dr = dxdydz ) ,  where we use 

the notation that unlabeled integrals are over the 
whole of space. The shape of a molecule can be 
represented using the shape-density function 

Pg(r) = c P? - c P?Pf 
i i < j  

+ c P$P,8P8 - c PPPfP8PP + * . * .  
i < j < k  i < j < k < l  

(7) 

The volume of the molecule can hence be written 
as 

where the multiple summation terms represent the 
intersection volumes, which must be allowed for 
in assessing the total volume of a set of intersect- 
ing soft spheres. This has a clear precedent in 
standard hard-sphere methodologies4, 22; and al- 
though the present work is not aimed at an exact 
reproduction of hard-sphere volumes, we do want 
to use a parallel mathematics. Hence the pair inter- 
section volume of two sites i and j is defined as 

(9) 

and similarly for higher order intersections. A con- 
venient alternative representation of the Gaussian 
shape density is to use the equivalent product 
formula 

Although we have been unable to directly inte- 
grate this formula analytically to obtain volumes, 
it has been integrated (as part of a separate piece 
of work) by quadrature (nurneri~ally)~~ for a set of 
blocked amino acids, giving volumes almost iden- 
tical to those obtained from eq. (8). In principle, 
the shape density could be evaluated on a lattice 
as part of a CoMFA-typeZ4 analysis. Such a repre- 
sentation of the steric properties of a molecule has 
the advantage of being smoothly varying, and 
because there are no singularities, arbitrary cutoffs 
are not required to avoid unacceptably large nu- 
merical values. In this respect such a function has 
similar advantages to the Gaussian attenuated 
functions proposed by Klebe et al.25 The calcula- 
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tion of (10) on a grid does not form part of the 
shape matching algorithm described in the follow- 
ing, although it has proved convenient for the 
computation of contour representations of molecu- 
lar shape for graphical display. 

The important point about the Gaussian repre- 
sentation given in (8) is that all volumes and 
intersection volumes can be calculated analytically 
in terms of simple algebraic formulae that involve 
nothing more complex than an exponential. For 
real molecules, with an arbitrary number of atoms 
this formula would comprise, however, a combi- 
natorial number of product terms, the evaluation 
of which would be obviously impractical. A sim- 
ple algorithm is therefore adopted to compute 
volumes and areas from eq. (8) for an arbitrary 
number of atoms, which reduces the number of 
terms computed in (8) by applying a cutoff crite- 
rion to define a local neighbor list for each atom. 
This is fully described in ref. 7. The pair intersec- 
tion volume is given by 

vij = p l K . . (  ' I  q2, a1 + O L j  (11) 

where 

and Ri j  is the distance between atoms i and j .  The 
existence of simple formulae for volumes implies 
that volume gradients also have analytic formulae. 
In particular, the gradient of a volume such as Vij 
in (11) with respect to nuclear centers i or j is 
trivial to compute because, for example, 

which implies that gradients (and higher gradi- 
ents) are proportional to the volume factors al- 
ready computed. No extra transcendental function 
evaluations are required. A complete set of expres- 
sions for general intersections, their nuclear coor- 
dinate derivatives, and Gaussian areas has already 
been given.' 

The main purpose of this article is shape match- 
ing. The matching process is essentially a matter of 
maximizing the intersection volume of two mole- 
cules by rigidly translating and rotating one of 
them with respect to the other. Consider molecules 

A and B with Gaussian densities 

p; = 1 - n (1 - p ! ) ,  x = A or B ,  (14) 
i e x  

then the molecular intersection volume is 

(15) 

Expanding the densities (14) using representation 
(71, we find that it is possible to develop a series 

in which pair, triple, and higher atom based densi- 
ties appear, subject to the restriction that the index 
ranges always cover both molecules. It is impor- 
tant to realize that there are no new volume for- 
mulae other than those already presented. 

The optimization technique that we have uti- 
lized relies upon analytic evaluation of the first 
and second gradients of the intersection volume 
with respect to the rigid-body rotations and trans- 
lations. The rotational part of the problem is solved 
using a quaternion formulationz6 of the parame- 
ters specifying the rotations. This replaces the Eu- 
ler angles usually used to specify rotations by four 
real parameters and a constraint. The Euler angles 
have a plane of singularities that reduce the effi- 
ciency of minimization techniques and give rise to 
artificial saddle points and minima, a problem not 
encountered when using the purely algebraic qua- 
ternion parameters. Our implementation of a sin- 
gularity-free rigid-body optimization essentially 
follows that of Markey et al.?' although after some 
experimentation we choose a penalty function sug- 
gested by Kearsley z8 to constrain the quaternion 
parameters to unity. Hence one is thus effectively 
optimizing in a six-parameter space. 

In searching for the optimal shape comparison, 
optimization from a single initial relative orienta- 
tion will not necessarily lead to the global maxi- 
mum in the volume intersection. In principle, any 
suitable global optimization method (for example 
Monte Carlo or simulated annealing) can be used 
to search the rotational/translational space to seek 
the globally optimal shape match. However, 
adapting the method of Masek,' we find it conve- 
nient to define four initial orientations as starting 
points for optimization. These points are chosen by 
aligning both molecules to have a common origin 
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at their respective shape centroids that are defined 
as 

(17) 

for molecules x = A or B. Molecules are then 
subsequently aligned by first computing a shape 
"quadrupole" tensor, thus 

(18) 

where we have used Greek subscripts to indicate 
Cartesian components (it is straightforward to 
compute higher order shape multipoles7, 29). The 
eigenvectors of the 3 x 3 matrix in (18) can be 
made to represent canonical right-handed axes in 
terms of which of the two molecules can be aligned. 
From such an alignment, rotation by rr radians 
about any of these axes generates a total of four 
initial orientations. This procedure provides well- 
spaced starting points in rotational/translational 
space, and makes allowance for indeterminate 
phases of the eigenvectors that result in flipping of 
pairs of axis directions, which represent bona fide 
right-hand axis systems. 

The method of shape comparison that we are 
proposing requires only two parameters per atom 
center, namely ui and p i .  The radius parameter is 
normally chosen as the van der Waals radius. The 
Gaussian weights pi  fix the exponent through con- 
straint (6) and eqs. (3) and (4). It has been demon- 
strated previously7 via protein calculations that 
the value pi = 2.70 ( A  = 1.5514) gives good results 
for intersection volumes. One can argue that a 
more suitable pi value for shape matching would 
be obtained by taking the limit of Vi$ as the 
interatom distance becomes zero. In this limit, the 
intersection volume for equal radius spheres 
should just be 4rc3 /3 .  Hence (11) implies 

4rru 3/2 

v.. ' I  = - 3 = P?( $) 
=+ p ,  = 2 f i ,  (19) 

which is close to the value of 2.70 recommended 
previ~usly.~ The exact choice of pi is discussed in 
the Results section. This ensures that the Gaussian 
formulation works in the same way as the hard- 
sphere model in the pair coalescence limit for 
equal radius spheres. The maximum index ob- 
tained after optimization is a measure of goodness 

of matching for the two molecules. For general 
comparisons, however, one needs to use a normal- 
ization. Although this is arbitrary, it is convenient 
to use a standard method introduced by Hodgkin 
and Richards?", 31 

(20) 

which obviously satisfies the bounds 

The normalization of the index plays no role in the 
present work, because we are only interested 
in the molecular conformations of specifically 
matched structures, rather than global shape com- 
parisons for large numbers of matched molecules. 

Results 

To demonstrate the utility of the Gaussian shape 
matching method, we present a couple of illustra- 
tive applications, namely the prediction of the rela- 
tive alignment of different ligands at a common 
protein receptor site, and the computation of chiral 
volumes. We first discuss the computational per- 
formance of our method relative to established 
analytical hard-sphere techniques. 

An important feature of our Gaussian descrip- 
tion of molecular shape is that there are only two 
parameters describing each atom. One of these 
parameters is an atomic radius, and for all of the 
calculations in this work we use a set of radii 
based on those given by C ~ n n o l l y ~ , ~ ~  and shown 
in Table I. In all of the calculations presented in 
this section a Gaussian weight of p = 2.70 ( A  = 

1.5514) has been used. Table I1 shows various 
timings for the Gaussian approach in CPU seconds 

TABLE 1. 
Atomic Radii Used for Molecule Calculations. 

Atom 

Type 
Radius 

tk 
1.70 
1.65 
1 .oo 
1.60 
1.90 
1.90 
1.30 
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TABLE II. 
Performance of Techniaues to Calculate Gaussian Volumes and Their Gradients. 

No. 
Moleculea Atoms 

Ala 22 
Helix a 110 
1 mjc 51 4 
2int 1047 
3aPP 2366 
1 we 4046 

Gaussian 
VOl. (A31 

133 
1276 
5770 

1 1848 
26467 
45001 

Hard-Sphere 
V ~ I .  (as) 

129 
1277 
5785 

1 1864 
26449 
45074 

T4 
(S) 

T5 
(S) 

0.02 0.02 0.03 
0.04 0.05 0.12 
0.20 0.27 0.43 
0.41 0.53 0.93 
1.18 1.20 2.21 
2.10 2.50 4.75 

14.4 
41.5 

266.5 
521 .O 

1089.3 
1804.1 

0.00 
0.01 
0.18 
0.77 
4.01 

12.6 

a Molecule and column labels are identified in the text. 

for a SGI Indigo I1 R4000 processor running at 100 
MHz. The molecule Ala is the amino acid alanine 
blocked with acetyl and N-methyl at the N and C 
termini, respectively, helix a is a helical segment of 
interleukin-4 (residues 5-18),33 and the remaining 
molecules are proteins identified by their 
Br~okhaven~~ entry code. The columns labeled T1, 
T2, and T 3  are CPU times required to calculate 
the volume, volume and first gradient, and the 
latter plus the Hessian, respectively (assuming in- 
teratomic distances were precomputed). Column 
T4 gives the time required to calculate the Gauss- 
ian shape density (7) at each point on a 653 rectan- 
gular grid. Such a calculation is not used in the 
shape matching algorithm, but has proved useful 
for visualization purposes. We also calculated the 
function on a rectangular grid in only a few sec- 
onds, even for a 6000 atom protein, by introducing 
a spherical cutoff, without any great loss in accu- 
racy. T5 gives the time to build interatomic pair- 
wise distances required for the algorithm. Columns 
T1-T4 show that overall our method is approxi- 
mately linear in the number of atoms, N. The 
dependence in column T5, on the other hand is 
roughly quadratic in N (the algorithm uses a 
neighbor list approach) as expected. The point of 
separating these parts of the algorithm (inter- 
atomic distance calculation, from the rest) is that 
the neighbor distances are usually available in 
precomputed form in, for example, molecular me- 
chanics packages in which the Gaussian shape 
model could be introduced as part of a simple 
analytical area or volume based solvation energy 
term. It should also be emphasized that the com- 
putations of hard-sphere volume derivatives for 
molecules with thousands of atoms are extraordi- 
narily expensive. Table 111 shows comparative tim- 
ings required to overlay copies of identical 
molecules frqm a well-defined nonoverlayed start- 
ing point (2 A separation, and a 30" rotation along 

TABLE 111. 
Comparative Timings for Gaussian and Hard-Sphere 
Overlay Methods. 

No. FEVAL Time (s) 
Molecule Atoms G HS G HS 

Benzene 12 35 77 0.6 17.0 
Ala 22 35 99 1.2 49.8 
7hvp 61 39 73 9.1 144.6 
Helix a 110 50 124 48.2 468.0 

the long shape-quadrupole axis). The molecules 
used in this table were already identified, except 
7hvp, which is an HIV protease ligand. The over- 
lay is calculated by maximizing the intersection 
volume with respect to rigid translations and rota- 
tions of one of the copies, and convergence is 
defined when the root mean square (rms) of the 
gradient is less than We find this to be a 
stringent convergence criteria. For example typical 
initial rms values of the gradient are = lo3; val- 
ues of = lo-' are obtained for pairs of structures 
that appear from inspection using molecular 
graphics to exactly align. In all cases the final 
structure corresponded to an exact overlay of the 
two identical molecules, demonstrating that the 
Gaussian overlap model behaves correctly in the 
limit of a unit rotation/null translation. From the 
discussion in the Methods section concerning the 
behavior of the Gaussian product theorem as the 
interatom distance becomes zero, it can be seen 
that the exact superposition of identical molecules 
could not necessarily be expected. However, it 
seems that consideration of many Gaussian inter- 
sections compensates any errors introduced by the 
Gaussian volume not exactly converging to the 
maximal hard-sphere intersection volume, as is the 
case for a pair of Gaussians with a weight other 
than p = 2&. Investigation of the variation in the 
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behavior of these calculations, and in those de- 
scribed below suggested that the results changed 
little for Gaussian weights chosen around p = 2.70 
f 0.3. The number of function evaluations re- 
quired for Gaussian (G) and hard-sphere (HS) 
methods is given in the column labeled FEVAL of 
Table 111, for a series of molecules similar to that 
found in Table 11. It can be seen that hard-sphere 
techniques require roughly double the number of 
iterations. This is probably because the Gaussian 
volume intersection function is more smoothly 
varying than the piecewise continuous hard-sphere 
one. The derivatives of the Gaussian function are 
therefore better guides for convergence directions 
on the rigid-body parameter surface. The compara- 
tive timings given in Table 111 indicate a good 
improvement in performance relative to analogous 
analytical hard-sphere models. 

Having established that the shape-comparison 
algorithm will efficiently align identical molecules, 
we now apply the method to the problem of pre- 

Ihwe 

dicting the relative alignment of structurally dif- 
ferent ligands binding at a common protein recep- 
tor site. Three protein structures were chosen, 
namely thrombin, HIV protease (HIV PR), and 
thermolysin. For each protein a set of structurally 
diverse ligands was selected. They are shown in 
Figures 1-3 and are identified by the Brookhaven 
entry code associated with the protein-ligand 
complex. To obtain the experimental relative orien- 
tation of a pair of ligands each in the conformation 
bound to a given protein, the crystallographic co- 
ordinates of the protein-ligand structures were 
transformed into a common frame by an optimal 
least-squares alignment of the C" backbone atoms. 
For a given set of protein-ligand complexes there 
may be minor conformational or sequence differ- 
ences between the protein itself in different com- 
plexes. The flexible nature of proteins means that 
the conformation of the binding pocket can be 
different for different ligands. An example of se- 
quence differences is the case of HIV PR, in which 

FIGURE 1. Thrombin ligands. 
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some of the structures derived from a synthetic 
protein have nondisulfide linked cysteine residues 
replaced by a-aminobutyric acid. Nonetheless the 
rms differences between C" backbone atoms of the 
tligned proteins weore always in the range 0.2-1.0 
A, typically = 0.4 A. The errors were always very 

small for any pair of the thermolysin structures in 
which crystals of the complex were obtained by 
soaking, and the largest error occurred in compar- 
ing two thrombin structures obtained from differ- 
ent species. In all cases the errors are very much 
smaller if only the backbone region around the 

H 
0 

Ac - Se-Le- A- Phe P-lle- Vd- OMe 

1 hps 

H 
0 

Ac- Val- Se- Gln - A s r ~ - & u  Val-Ile-Val-OMe 

8hvp 

FIGURE 2. HIV protease ligands. 
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H 

I H 

Me 
I 

I H 
3tmO NH3+ 

9 Ho*;k 0 N \  

1 till H 

HO 

N 
H 

CQH OH H 

FIGURE 3. Thermolysin ligands. 

active site is considered as part of the least-squares 
alignment procedure. The predicted relative orien- 
tation of the ligands is determined purely by using 
the Gaussian shape comparison procedure de- 
scribed in the previous section. This method makes 
use of the molecular shape quadrupole to define 
the initial relative orientation of the ligands, as 
described in the Methods section. Tables IV-VI 

show the agreement between the Gaussian ( V g )  
and the hard-sphere volume (Vhs)  as well as the 
eigenvalues of the shape quadrupole (the principal 
shape quadrupoles), Q1, Q2, and Q3, computed in 
a frame in which the off-diagonal tensor elements 
are zero. The thrombin ligands show relatively 
little variation in each of the components. How- 
ever, for the ligands of HIV PR (Table V), although 
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TABLE IV. 
Volumes and Principle Shape Quadrupoles for 
Thrombin Ligands. 

1 dwc 394.1 394.6 10.8 6.4 3.3 
1 dwd 411.6 411.5 14.4 6.2 3.2 
1 dwe 344.0 344.1 14.3 7.2 2.0 
1 ett 345.8 344.6 12.0 4.5 3.5 

TABLE V. 
Volumes and Principle Shape Quadrupoles for 
HIV PR Ligands. 

4phv 507.5 507.8 22.9 8.4 1.8 
7hvp 708.3 706.0 46.6 5.9 2.8 
8hvp 714.8 714.5 54.7 5.9 3.3 
Shvp 608.4 609.9 36.9 5.7 3.3 
1 hps 531.1 530.0 29.8 6.7 2.2 
1 hvr 504.1 504.1 21.5 6.6 2.4 

TABLE VI. 
Volumes and Principle Shape Quadrupoles for 
Thermolysin Ligands. 

V g  VhS Q1 Q2 Q3 
Ligand (A3) (A3) (A21 (A21 (kt 
1 tmn 393.9 394.5 13.4 8.6 2.6 
3tmn 247.7 248.3 10.6 3.1 1.8 
4tmn 415.1 415.0 20.4 6.0 2.4 
lthl 386.5 387.4 11.7 8.7 2.6 
lt lp 412.9 412.5 13.7 7.3 2.5 

there is little variation in components Q2 and Q3, 
the component Q1, takes a considerable range of 
values (= 20-55 A’). This is consistent with the 
tunnel-like binding pocket of HIV PR being able to 
bind peptides and peptidelike molecules of vari- 
ous lengths. These results suggest that elements of 
the shape quadrupole (which are trivial to com- 
pute) are capable of characterizing the shape fea- 
tures of ligands. Clearly, one possible application 
of the shape quadrupole (and higher moments) is 
as a tool for searching 3-D data bases to find 
molecules with similar molecular shape. 

A comparison between the observed-and pre- 
dicted relative orientations for different pairs of 
ligands binding to the chosen proteins is given in 

Tables VII-IX. These tables report the rms differ- 
ence between the observed and predicted orienta- 
tion of the ligand given in the column, relative to 
the ligand given in the row. The observed orienta- 
tion refers to the ligand overlap found for two 
ligands A and B complexed to a common protein 
that has been backbone overlayed as explained 
previously. The predicted orientation, on the other 
hand, corresponds to the maximal overlap of the 
ligands A and B using the Gaussian method. As a 
check we carried out optimizations starting from 
the experimental relative orientation, and usually 
these converged to the best of the minima found 
from the four starting points described in the 
Methods section. However, this was not true for 
the ligand pair 4tmn/ltmn, but in this case the 
maximal overlap volume was identified using a 
simple Monte Carlo type search procedure. The 
simple shape based alignment procedure predicts 
many of the relativeobinding modes to an accuracy 
with an rms < 1.0 A. There are instances in which 
the method is not so accurate. For example, in 
predicting the relative orientation of ldwe and 
ldwc, the shape alignment maximizes the volume 
intersection by superimposing the proline ring of 
ldwe onto the piperidine ring fragment of ldwc; 
however, this is not observed experimentally. The 
worst prediction is for the lig$nd pair 4tmn/3tmn 
in which the rms error is 5.7 A. In this example, a 
tryptophan ring is present in the 3tmn ligand but 

TABLE VII. 
rms Comparison of Pairs of Overlapped Thrombin 
Ligands (See Text). 

Ligand 1 dwc 1 dwd 1 dwe 1 ett 

1 dwc 0.00 1.42 1.61 0.57 
0.00 0.33 1.28 1 dwd 

0.00 1.45 1 dwe 
0.00 1 ett 

- 

- - 
- - - 

TABLE VIII. 
rms Comparison of Pairs of Overlapped HIV PR 
Ligands (See Text). 

Ligand 4phv 7hvp 8hvp Shvp lhps lhvr 

4phv 0.00 0.86 0.52 0.36 0.31 0.41 
0.00 0.17 0.37 0.71 1.80 7hvp - 

0.00 0.35 0.24 1.40 8hvp 
0.00 0.55 0.88 Shvp - 

0.00 0.60 1 hps 
0.00 1 hvr 

- - 
- - 

- - - - 
- - - - - 
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does not overlap with any part of the 4tmn ligand 
in the experimentally observed relative orienta- 
tion. The predicted relative orientation involves 
the largish tryptophan ring structure intersecting 
with some part of the 4tmn structure. In this exam- 
ple, maximizing volume overlap leads to a very 
poor prediction of relative binding mode. How- 
ever, in general the predictions are reasonably 
accurate and identify the common binding modes 
of pairs of ligands even when there are no obvious 
extensive atom-atom correspondences. The shape 
similarity index S A B  of the ligands as defined in 
eq. (20) is given in Tables X-XI1 for the various 
ligand pairs studied. The ligands for this study 
were picked because they are markedly dissimilar 
in a chemical sense and the S A B  coefficients re- 
ported in Tables X-XI1 reveal this. These examples 
could not be overlayed using matching based on 
individual nuclei represented by single points; one 
requires instead a proper representation of the 
shape. The main conclusion from our results is 
that Gaussian shape matching provides a robust 
predictive tool for ligand binding even for such 
dissimilar ligands. The molecular graphics repre- 
sentations of overlayed ligands show very clearly 
how functional groups in dissimilar molecules 
align in the binding pocket. 

The computation of intersection volumes be- 
tween dissimilar molecules gives rise to the inter- 
esting possibility of defining an index of chirality. 
There has been much interest recently in finding 
quantitative measures of ~ h i r a l i t y ~ , ~ ~ - ~ '  as a way 

TABLE IX. 
rms Comparison of Pairs of Overlapped Thermolysin 
Ligands (See Text). 

Ligand ltmn 3trnn 4trnn Ithl It lp 

ltmn 0.00 0.73 0.60 0.32 0.91 
3tmn 0.00 5.70 0.33 0.58 

0.00 0.45 0.77 4tmn 
0.00 0.61 Ithl 

0.00 

- 

- - 

- - - 
- - - 1 tlp - 

TABLE X. 
Shape Similarity SAB for Pairs of Thrombin Liaands. 

Ligand 1 dwc 1 dwd 1 dwe 1 ett 

1 dwc 1 .oo 0.82 0.69 0.85 
1 .oo 0.78 0.79 1 dwd 

1 .oo 0.70 1 dwe 
1 .oo 1 ett 

- 
- - 
- - - 

TABLE XI. 
Shape Similarity SAB for Pairs of HIV PR Ligands. 

Ligand 4phv 7hvp 8hvp Shvp lhps Ihvr 

4phv 1.00 0.67 0.64 0.68 0.78 0.78 
7hvp - 1.00 0.83 0.76 0.72 0.68 

1.00 0.71 0.61 0.59 8hvp 
1.00 0.73 0.61 Shvp 

1.00 0.72 1 hps 
1 .oo 1 hvr 

- - 
- - - 
- - - - 

- - - - - 

TABLE XII. 
Shape Similarity SAB for Pairs of 
Thermolysin Ligands. 

Ligand ltmn 3tmn 4tmn lthl Itlp 
~ 

ltmn 1 .oo 0.72 0.69 0.91 0.88 
3tmn 1 .oo 0.60 0.79 0.74 
4tmn 1.00 0.67 0.67 

1.00 0.87 lthl 
1 .oo 

- 

- - 

- - - 
- - - - 1 tlp 

of assessing the influence of chirality on ordered 
bulk phases (liquid crystals), the design of drugs, 
and asymmetric synthesis, for example. The pre- 
sent work merely involves the overlapping, by 
maximization of the intersection volume, of the 
left- and right-hand images of a target chiral 
molecule. This is essentially the suggestion of 
Gilat35 that was implemented using a numerical 
hard-sphere treatment36 and used to investigate 
the potency of chiral  drug^.^^,^' The quantity 1 - 
S A B  [eq. (20)] was taken as a chirality index for the 
system. This is trivially shown to be equivalent to 
considering a normalized difference in intersection 
volumes between the enantiomeric pair and a 
nonenantiomeric pair. This procedure has the merit 
of simplicity as well as efficiency. Other tech- 
niques such as the Haussdorff index37,38 or least 
squares assess the chirality using pointwise repre- 
sentations of atoms, i.e., they do not fully assess 
the extent of the molecule. The Haussdorf ap- 
proach relies on a set theoretic definition of simi- 
larity that gives rise to an awkward piecewise 
continuous function that is difficult to optimize. A 
similar idea can be used to assess fuzzy symmetry 
as a development of the ideas of Zabrodsky and 
Avnir.4' For a given nonsymmetric molecule, these 
authors define the nearest geometry with a given 
exact point group symmetry. This is done using 
a geometric folding/unfolding procedure. The 
Gaussian overlay method could then be used to 
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give an assessment of symmetry using the index 
S A based on the two geometries. 

To demonstrate further the utility of the Gauss- 
ian shape comparison method, we computed the 
chiral index (1 - S A B )  of the biphenyl system, 
which has an axis of chirality when the dihedral 
angle between the aromatic rings differs from 0" or 
90". A graph of the chirality index as a function of 
dihedral angle is given in Figure 4. It can be seen 
that the chirality index has a maximum at 45" and 
passes through zero at 0", 90", and 180". This dif- 
fers from the observation of Osipov et a1>2 who 
identify a maximal chirality at a twist angle of 
approximately 30", although their method treated 
the molecule as comprising points in space and 
did not account for the extent of the molecular 
shape. Unlike the pseudoscalar Osipov index, the 
shape chirality index is symmetric about the dihe- 
dral angle of 90". This illustrates a potential draw- 
back of a purely scalar chirality index, which can- 
not be Boltzmann averaged to zero over a range of 
conformations, as evidently should be the case for 
biphenyl. We also computed the chiral index for 
all of the amino acids (blocked with acetyl and 
N-methyl at the N and C terminii, respectively). 
For the extended structures (4  = + = 180") there is 
relatively little variation in the chiral index. This 
is because the maximal volume intersection is 
achieved by superimposing the enantiomers such 

0.16 

0.14 

0.12 

0.1 

8 
-1 0.08 

s 
n C 

5 .- 

0.06 

0.04 

0.02 

0 

that the amino acid side chains approximately 
overlap with each other, and the peptide backbone 
of one enantiomer overlaps with the backbone of 
the other enantiomer, but running in the reverse 
direction. On the basis of shape this is a reasonable 
overlap, although one consequence is that the car- 
bony1 group of one backbone chain overlaps with 
the NH moiety of the other chain (and vice versa). 
For these structures threonine (Thr) had a much 
larger chiral index (0.11) than serine (0.03) or va- 
line (0.04). This is consistent with the presence of a 
chiral atom in the Thr side chain. To investigate 
the dependence of the index on the backbone con- 
formation, we computed it for different backbone 
dihedral angles chosen to represent local minima 
observed in peptides and proteins. The results 
suggest that the most chiral conformers are in the 
bridge (4 = -110, I) = 10.0') and helical regions 
(4 = - 74, $ = - 45"), whereas the least chiral are 
in the extended, C5 (4 = - 150, I) = 150") and p 
(4 = - 140, $ = 135") regions. Given the computa- 
tional efficiency of the method, it was also possible 
to compute the chiral index for actual helices. For 
example we observed that the chiral index con- 
verged to a value of = 0.25 for polyalanine helices 
of various lengths (up to 25 residues), whereas the 
value of the helical segment of interleukin-4 used 
in Table I11 gave a value of 0.35. 

40 60 80 100 120 140 160 180 20 
dihedral (deg) 

FIGURE 4. Biphenyl chirality diagram. 
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Conclusions 

The present work originated in a scheme that 
was directed solely toward rapid and accurate 
calculations of molecular volumes, areas, and their 
nuclear positional derivatives7 This scheme used 
atom-based Gaussian functions, and introduced 
a generalized coalescence thereom to compute 
Gaussian intersections of arbitrary order. Adopting 
a Gaussian formulation of the inclusion-exclusion 
formula that is parallel to that used to compute 
hard-sphere measures then gives values of molec- 
ular volumes and areas, which are accurate when 
compared to hard-sphere volumes and areas to 
around 1% for small and large molecules. In the 
present contribution we established that this 
Gaussian technology can be extended to include 
the computation of intersection volumes between 
molecules. An optimization procedure to maxi- 
mize intersection volumes can then be used to 
match shapes of dissimilar molecules. We tested 
our shape matching technique to show that the 
relative orientation of ligands binding to protein 
hosts can be predicted on the basis of their volume 
overlay. The shape matching can also be used to 
quantify a degree of chirality of asymmetric 
molecules by overlaying the left- and right-hand 
forms. A third important idea introduced in this 
article is that of shape multipoles. The shape mul- 
tipoles are averages of products of Cartesian coor- 
dinates over the Gaussian shape density. The use 
of the shape centroid and the principal axes of the 
shape quadrupole provides useful starting frames 
for shape matching in our new approach. The 
principal shape-quadrupole moments are indica- 
tors of molecular shape that may be useful in 
QSAR studies of molecular activity. All quantities 
discussed in this and our previous work7 can be 
computed analytically, rapidly, and accurately. 

In this work the ligand conformation was taken 
from the crystallographic experiment. In the 
general ligand design process, the ligand confor- 
mation will be unknown. The efficiency of the 
Gaussian methodology means that it is feasible to 
overlay many conformers generated by a search 
procedure of a ligand (for which an experimental 
structure is not available) onto either the known 
structure of another ligand or onto a very rigid 
ligand. The Gaussian intersection volumes can then 
be used to assess the suitability of a flexible ligand 
to bind at a receptor site. There are no difficulties 
in extending Gaussian shape-matching techniques 

to include multiple superpositions and to include 
chemical differences between the atoms in differ- 
ent environments (for example hydrophobic, polar, 
hydrogen-bond donors/acceptors). This can be 
achieved by coloring atoms, i.e., by computing 
contributions to intersections that arise from 
matching atom classes, such as those described. 

The importance of shape matching in drug and 
material design is well understood. It arises be- 
cause the intermolecular interactions that stabilize 
the receptor-ligand complex are enthalpically 
weak and only become effective if the chemical 
groups involved can approach each other closely, 
which is favored by shape complementarity. En- 
tropic contributions advantageous to binding in- 
volve the loss of complexation water of both the 
host and the guest and are also favored by shape 
complementarity (to avoid empty space being filled 
with water 43,44 ). Additional disadvantageous en- 
tropic terms involve loss of degrees of freedom. 
On the whole there is a broad balance between 
these competing effects and the atoms in the com- 
plex tend to be in van der Waals contact. This 
gives some meaning to the rather jaded lock-and- 
key concept of binding. Shape matching methods 
that rely on hard spheres suffer a number of seri- 
ous defects. These include complicated analytical 
expressions and gradient discontinuities that lead 
to slow computation involving complicated algo- 
rithms. The Gaussian shape technique obviates all 
of these disadvantages and offers a more physi- 
cally realistic description than the traditional hard- 
sphere model of molecular shape. 
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