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Comparison of Structure- and Ligand-Based Virtual
Screening Protocols Considering Hit List Complementarity

and Enrichment Factors

Dennis M. Kriiger® and Andreas Evers*®!

Structure- and ligand-based virtual-screening methods (dock-
ing, 2D- and 3D-similarity searching) were analysed for their ef-
fectiveness in virtual screening against four different targets:
angiotensin-converting enzyme (ACE), cyclooxygenase 2 (COX-
2), thrombin and human immunodeficiency virus 1 (HIV-1) pro-
tease. The relative performance of the tools was compared by
examining their ability to recognise known active compounds
from a set of actives and nonactives. Furthermore, we investi-
gated whether the application of different virtual-screening
methods in parallel provides complementary or redundant hit
lists. Docking was performed with GOLD, Glide, FlexX and Sur-
flex. The obtained docking poses were rescored by using nine
different scoring functions in addition to the scoring functions

Introduction

In the last few years, virtual screening (VS) has become a major
part of modern drug discovery for the fast and effective iden-
tification of novel bioactive ligands from large compound data-
bases."? Numerous structure- and ligand-based approaches
have been reported.®™®

Ligand-based virtual-screening methods differ in the descrip-
tors of the molecular structures and properties and the metric
used to describe the similarity between molecules. Several ap-
proaches allow molecules to be combined into a model that
can itself be used as reference for ligand-based virtual screen-
ing.®’~% Different methodologies can make use of either 2D or
3D descriptors. Given 3D conformations of one or more active
ligands derived from structure determination methods or from
molecular modelling, 3D-similarity®™ or pharmacophore search-
es'"” represent an option for the virtual screening of com-
pound libraries.

Finally, once the structure of the target protein is known, li-
gands can be subjected to molecular docking and scoring to
provide potential candidates for experimental testing. Due to
the high dimensionality of the configuration space and the
complexity of the energetics governing the protein-ligand in-
teractions, the docking approach is generally the computation-
ally most demanding procedure. Therefore, different virtual-
screening methods are often applied sequentially, with hier-
archical filters applied due to the different complexities of the
different screening steps with respect to their computational
requirements. Several success stories based on this cascaded
virtual-screening approach have been reported in litera-
ture.[”_19]
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implemented as objective functions in the docking algorithms.
Ligand-based virtual screening was done with ROCS (3D-simi-
larity searching), Feature Trees and Scitegic Functional Finger-
prints (2D-similarity searching). The results show that structure-
and ligand-based virtual-screening methods provide compara-
ble enrichments in detecting active compounds. Interestingly,
the hit lists that are obtained from different virtual-screening
methods are generally highly complementary. These results
suggest that a parallel application of different structure- and
ligand-based virtual-screening methods increases the chance
of identifying more (and more diverse) active compounds from
a virtual-screening campaign.

The recent literature covers several retrospective compari-
sons of different structure- or ligand-based virtual-screening
tools.""'220%! One study was performed in our group. We
compared the relative performance of structure- and ligand-
based virtual-screening methods for four biogenic amine-bind-
ing GPCRs." In that study, ligand-based virtual screening was
superior to docking. However, several aspects of our study
were not “fair”: 1) The protein structures were not derived by
crystallography but by homology modelling (based on the
crystal structure of bovine rhodopsin). 2) For the generation of
ligand-based (pharmacophore, Feature Tree and 2D PLS)
models, multiple ligands were used as training sets, whereas
for docking, we considered only one (rigid) protein structure
for each target. With the present study, we would like to com-
pare the performance when docking is performed into one
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Supporting information for this article is available on the WWW under
http://dx.doi.org/10.1002/cmdc.200900314: Eight tables with enrichment
factors derived from all scoring functions applied to each of the docking
algorithms and one table with enrichment factors derived from all scor-
ing functions applied to ROCS. Furthermore, the MDDR entry numbers
of active and decoy compounds are provided.
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rigid protein structure and ligand-based searches are based
(only) on one reference ligand. Another aspect that has not
been addressed either in our study or in others is the question
in how far the different virtual-screening approaches provide
complementary or redundant hit lists. The question to ask
when assessing different tools for a virtual-screening campaign
might indeed not only be which tool to prefer over the other
but which tools should be used in parallel or how different
methods should be combined with each other.

This study compares the performance of structure- and
ligand-based virtual-screening tools for four targets (ACE, COX-
2, HIV and thrombin) whose protein structure is known from
crystallography. In addition, we shall investigate the comple-
mentarity of the hit lists generated by the different ap-
proaches.

For the structure-based screening of the virtual compound
libraries, we used the docking programs Glide,”® GOLD,*® Sur-
flex®" and FlexX.®? The obtained docking poses were rescored
and ranked with different scoring functions (see the “Experi-
mental” Section). For ligand-based virtual screening, we ap-
plied 3D-similarity searches (using ROCSY), and 2D-similarity
searches using Feature Trees® or Scitegic Functional Finger-
prints (FCFP4).

Computational Methods
Virtual screening targets

Protein structures, reference ligands, screening set: In order to
allow for a fair comparison between the different approaches, we
used one (rigid) protein crystal structure for the docking approach
(neglecting protein flexibility), and one ligand as reference for the
ligand-based virtual-screening approaches (neglecting the exis-
tence of further active ligands with different scaffolds). The protein
crystal structures were obtained from the Protein Data Bank
(PDB).”® The query molecules used as reference for ligand-based
virtual screening were extracted from these crystal structures
(Figure 1).

To compare the performance of the different virtual screening pro-
tocols, we compiled diverse screening data sets of 50 “active” and
950 inactive compounds for each target, extracted from the MDL
Drug Data Report (MDDR). Since the inactive data set might still
contain actives simply because activity annotation might be miss-
ing in the MDDR, we will refer to these as decoys. Further details
are described in the “Experimental” Section.

Model generation and retrospective virtual screening

Docking and scoring: Ligands from each screening data set were
docked into the associated protein cocrystal structures by using
GOLD, Glide (SP and XP), FlexX and Surflex. In all cases, standard
parameters were used. All docking poses were rescored and
ranked by using nine different scoring functions in addition to the
scoring functions implemented in the docking algorithms. To inves-
tigate whether considering knowledge about ligand binding fur-
ther improves the docking results, we imposed “interaction con-
straints” on the docking procedure for the best docking program
(Glide SP; see the Experimental Section).

3D-similarity searching (ROCS): ROCS was used to perform shape-
based overlays of conformers, generated with OMEGA,®¥ onto the
reference ligand extracted from the appropriate PDB file. The refer-
ence ligand was provided as 1) its bioactive conformation, as ex-
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Figure 1. Protein structures and their complexed ligands that were used as
references for virtual screening. The docking constraints are ringed in red.
a) ACE crystal structure (PDB: Tuze®) complexed with enalapril. As docking
constraint, we imposed a hydrogen-bond acceptor able to interact with the
Zn?* jon. b) COX-2 crystal structure (PDB: 1cx2®”) complexed with S58. A
hydrophobic feature that is common to all crystallized COX-2 inhibitors was
used as constraint for docking. c) HIV-1 protease (PDB: 1 hpx*?) complexed
with KNI-272. Hydrogen-bonds to the catalytic aspartates were imposed as
docking constraints. d) Thrombin (PDB: 1dwc®®) complexed with MD805.
Three hydrogen-bond contacts were defined as constraints for docking.

tracted from the PDB file, 2) the Omega conformer closest to this
cocrystallised conformation or 3) the global-energy-minimum con-
former obtained after a MacroModel® conformational search. The
compounds of the screening data base were ranked according to
“ComboScore”, “ColorScore” and “ShapeTanimoto”. A detailed de-
scription of both the conformer generation with Omega and the
parameterization of ROCS is provided in the Experimental Section.

Feature Tree: The reference molecules and the molecules of the
screening sets were converted into feature tree models. To com-
pare reference and screening compounds, we applied the split-
search, match-search and dynamic match-search algorithms.*> In
the virtual screening, all candidate ligands were ranked according
to their resulting similarity to the respective reference ligand.

2D-similarity searching: 2D-similarity searches were performed by
using Scitegic’s functional class fingerprints (FCFP), the Tanimoto
index was employed as similarity coefficient for arithmetic super-
position and similarity ranking of the screening sets.

Results

In the following, we will compare the relative performance of
the different methods in retrieving known active compounds.
Subsequently, we will analyse the potential complementarity
of the different virtual-screening methods by providing a com-
parison of the hit lists obtained from the different approaches.
We will show selected examples where active ligands have
been retrieved among the top-scorers of one virtual-screening
method compared to another. This might help to understand
the general strengths and weaknesses of the different virtual-
screening methodologies.
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Docking and scoring

We first applied “free docking”, that is, we did not define any
constraints in the docking procedure based on knowledge
about ligand binding. All docking poses obtained from GOLD,
GlideSP, GlideXP, Surflex and FleX were ranked with the scoring
functions implemented as objective functions in the docking
algorithms and, furthermore, with nine other different scoring
functions. For reasons of clarity, we will only show the enrich-
ments obtained from the combination of the best docking
program and scoring function. Details are listed in the Sup-
porting Information.

Analysis of these results (see Figure 2 and Table S1) revealed
that GlideSP on average outperforms the other docking pro-
grams. In a next step, we wanted to investigate whether—or
to show that—considering knowledge about ligand binding in
terms of docking constraints improves the enrichments. These
docking constraints (shown in Figure 1) were defined after
careful visual inspection of all available crystal structures of the
four investigated targets.

For ACE (Figure 1a), GlideSP provided the best enrichment
for the top 10 scorers, identifying nine actives. Considering the
top-ranked 50 compounds, all docking programs provided
comparable enrichments. Consideration of the Zn** constraint
considerably improved the docking results for ACE. Indeed,
from the set of 50 active compounds and 950 decoys, only 23
actives and 19 decoys could be accommodated in the ACE

ACE docking

top 10 scorers

top 30 scorers top 100 scorers

Enrichment factor

% database screened

A. Evers et al.

binding site. Thus, this stringent constraint identifies nearly
50% of the actives, whereas only 2% of the decoys are re-
trieved as false positives.

For docking into the COX-2 crystal structure (Figure 1b), Gli-
deSP again outperforms the other docking programs. Here,
consideration of a constraint did not (substantially) improve
the virtual screening results. This is probably due to the fact
that the COX-2 ligands bind in diverse orientations and that
there are no dominant (polar) interactions used by a large frac-
tion of active binders.

It must be stated that HIV-1 protease (Figure 1c) represents
a challenge for structure-based virtual screening, since it has a
large, flexible binding site. Analysis of superimposed HIV-1 pro-
tease crystal structures revealed that different ligands induce
different binding-site conformations. Due to the large size of
the binding site, known HIV-1 protease inhibitors generally
have a large molecular weight and a partial peptidic or pepti-
domimetic character. Since this represents a handicap for both
ligand- and structure-based virtual screening and since the
goal of this study was not to show that virtual screening works
in “easy” cases, but rather to provide a fair comparison be-
tween ligand- and structure-based virtual screening, we decid-
ed to include this pharmaceutically relevant target in our
study.

For HIV-1 protease, the best enrichment for the ten top scor-
ers is obtained by Surflex. However, visual inspection revealed
that the docking poses were unrealistic. The top scorers re-
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Figure 2. Comparison of docking tools in virtual screening. Enrichments at 1, 5 and 10% are shown. For each docking program, the scoring function provid-

ing the best enrichment is listed.
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trieved by Surflex were indeed the large, peptide-like ligands;
however, they showed collapsed conformations in the binding
site and did not establish directed interactions with the pro-
tein. This example points out the importance of visual inspec-
tion of docking poses. The application of Surflex to the identifi-
cation of HIV ligands in virtual screening would possibly pro-
vide large peptidic ligands. Since the polar interactions ob-
served in the HIV crystal structures were not reproduced in
this example by Surflex, it is unlikely that such virtual screening
would be successful. The docking results obtained by GlideSP
could, again, be improved by including constraints. By defining
the essential hydrogen bonds to the catalytic aspartates, more
time is left to search the remaining conformational and config-
urational space for optimising the interactions with the protein
binding site. Visual inspection of docking poses and compari-
son with crystal structures of similar ligands revealed that the
poses generated by GlideSP are reasonable.

Similar to HIV-1 protease, thrombin (Figure 1d) is a protease
with a large fraction of known ligands having large molecular
weight and peptidic or peptidomimetic character. As for the
other proteases, the best enrichment among the ten top scor-
ers was obtained when docking with GlideSP. Consideration of
constraints (see Figure 1d) considerably improved the results.
To be fair, we have to admit that finding the three constraints
required considerable “manual” input and optimisation. Differ-
ent parameter settings and possible interaction constraints
were varied, and the constraints shown in Figure 1d represent

ACE ROCS
25
top 10 scorers top 50 scorers top 100 scorers
S
©
o
=
5]
E
o =
0
c
i
10%
% database screened
HIV ROCS
2%
top 10 scorers top 50 scorers top 100 scorers
S w
8
15
c
£
Ew0
0
I:l:-
0 .

1% 5% 10%
% database screened

[ x-ray conformation

[[[HHH]]M X-ray closest OMEGA conformer

FULL PAPERS

the combination of constraints that provided the best final en-
richment.

On average, GlideSP was the best docking program. Interest-
ingly, GlideSP substantially outperformed GlideXP, in contrast
to a study reported by Zhou et al.?” It was reported that the
Glide extra precision (XP) methodology substantially enhanced
the ability to pick out known active compounds from a
random data base. Our interpretation is that GlideXP is highly
sensitive to an accurate receptor conformation and provides
very exact docking solutions for ligands that fit into the provid-
ed receptor conformation. We assume that these ligands are
indeed retrieved as top scorers. For those compounds that
induce slight rearrangements of the binding site, GlideXP
seems to be less forgiving than GlideSP. These compounds are
consequently not retrieved among the top scorers by GlideXP.

3D-similarity searches (ROCS)

Enrichment plots for all ROCS searches are given in Figure 3,
enrichment factors are provided in Table S2 in the Supporting
Information. Not surprisingly, for all targets, the best enrich-
ments are obtained when the reference conformation corre-
sponds or is close to the bioactive conformation instead of the
lowest-energy conformer retrieved from a conformational
search. For ACE and COX-2, good enrichment factors are also
obtained when using the lowest-energy conformer as template
for similarity searches. For COX-2, this observation can be ex-
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Figure 3. Performance of ROCS in virtual screening. Enrichments at 1, 5 and 10% are shown. For each ROCS screen, the objective function (ShapeTanimoto,
ColorScore or ComboScore) providing the best enrichment is plotted (the enrichments obtained for the different objective functions are shown in Table S2).
The best objective functions are ColorScore for ACE and HIV-1, ShapeTanimoto for COX-2 and ComboScore for thrombin.
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plained by the fact that the lowest-energy conformer of the
ligand S58 is relatively close to the bioactive conformation
(rmsd=1.13 A).

The enalapril (ACE) lowest-energy conformer deviates from
the bioactive conformation (rmsd=2.23 A). However, since a
large fraction of the ACE actives have a similar topology of ro-
tatable bonds to enalapril, these compounds can also be
mapped onto the lowest-energy conformer of enalapril. For
HIV-1 (rmsd=4.42 A) and thrombin (rmsd=3.92 A), however,
the lowest-energy conformers deviate substantially from the
bioactive conformation, and this explains the poor enrich-
ments from these searches.

That the enrichments obtained from HIV-1 and thrombin in-
hibitors are poorer than those obtained from ACE is probably
due to the fact that the HIV-1 and thrombin data sets are
more diverse than the ACE data set; this is reflected by the ob-
servation that excellent enrichments are obtained for ACE with
similarity searches based on simple (FCFP4) 2D descriptors. As
indicated in Table S2, the performance of ROCS depends on
the applied scoring function implemented into ROCS (ShapeTa-
nimoto, ColorScore, ComboScore). The results vary from target
to target.

Feature Trees

The results obtained from virtual screening with Feature Trees
are plotted in Figure 4. Enrichment factors are provided in
Table S2. As mentioned before, Feature Tree searches were per-
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formed by applying the match-search, split-search and dynam-
ic match-search algorithms. These different search algorithms
perform differently among the four different targets. There is
no one search algorithm that performs consistently better or
worse than others.

2D-similarity searches with Scitegic Fingerprints (FCFP4)

Scitegic fingerprint searches have been performed as a bench-
mark for other virtual-screening tools to address the question
of how much better a virtual-screening tool is than a “simple
2D descriptor”. As described in the Experimental Section, the
compilation of active and decoy data sets for virtual-screening
evaluation was based on a diversity selection using this FCFP4
descriptor. Thus, the enrichments obtained from similarity
searches based on this descriptor reflect 1) how diverse the
active sets are compared to the decoy set and 2) how different
the reference compounds are from the respective active sets.
The enrichments obtained from FCFP4 similarity searches are
plotted in Figure 5, and the corresponding enrichments are
listed in Table S2.

Comparison

The relative performance of the different virtual-screening
tools is provided in Figure 5. For each tool, the best results
(obtained with the optimal parameter setting and scoring
function) are listed. An important goal of this study was to in-
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Figure 4. Performance of Feature Trees in virtual screening. Enrichments at 1, 5 and 10% are shown.
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Figure 5. Comparative performance of docking, ROCS, Feature Trees and Scitegic FPs in virtual screening. Enrichments at 1, 5 and 10% are shown. For each
virtual-screening method, the results obtained from the best parameter settings (i.e., scoring function, constraint setup for docking, reference ligand confor-
mation and scoring function for ROCS and search algorithm for Feature Trees) are considered.

vestigate whether different virtual-screening methods provide
us with similar or different hit lists of (active) compounds.
Therefore, for each target, we analysed the top 50 scorers and

COX
ROCS gjide ROCS

ACE
Glide,

FTrees

HIV Thrombi

Glide, ROCS

Glide, ROCS

FTrees FTrees

Figure 6. Redundancy and complementarity analysis for three different virtu-
al-screening tools. For each virtual-screening method, the number of actives
retrieved among the 50 top scorers is provided in the corresponding circles
(e.g., for COX, ROCS retrieved 18 compounds and FTrees 15). The intersec-
tion planes between two circles reveal how many unique compounds have
been retrieved by the two corresponding virtual-screening tools if the top
50 hit lists are merged (e.g., for COX, ROCS + FTrees retrieved 27 unique
compounds).
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merged the resulting hit lists. The redundancy and comple-
mentarity of the different virtual-screening tools observed for
the four different targets is provided in Figure 6.

ACE

For ACE, all virtual-screening tools perform remarkably well. As
mentioned before, the docking results could be substantially
improved by including an interaction constraint with the Zn?*
ion. Nevertheless, docking is outperformed by the ligand-
based approaches. Most strikingly, the 2D-similarity searches
based on FCFP4 fingerprints perform best. Although the selec-
tion of actives was based on a maximum diversity of ACE in-
hibitors available in the MDDR using these FCFP4 fingerprints,
the ACE active set was evidently not diverse enough compared
to the set of 950 decoys. In the context of this observation, it
is not amazing that the ligand-based virtual-screening ap-
proaches perform so well. This observation points out the im-
portance of data-set design for virtual-screening-validation
studies. Analysing the complementarity of the hit lists obtained
from the different virtual-screening tools (see Figure 6a) re-
veals that the different tools are obviously able to retrieve
compounds with different characteristics. When merging the
top 50 hit lists obtained from Glide (19 actives), ROCS (32 ac-
tives) and Feature Trees (31 actives), 45 (i.e. 90%) of all 50 ACE
inhibitors are retrieved; this demonstrates that each method is
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able to find compounds that are not identified by the other
methods.

For us, an important aspect of a virtual-screening tool is the
interpretability of the results. We want to visually analyze and,
thus, understand how a compound matches to a model and
why a compound is identified by one virtual-screening method
but not another. For docking, intuitive interpretability is pro-
vided by visualizing the docking mode in the protein structure
and analysing the interactions between protein and ligand. In
the case of ROCS, the 3D superimposition of a screening com-
pound onto the reference can be inspected. If the reference
compound was extracted from a cocrystal structure, visualiza-
tion is even possible in the context of the protein environ-
ment. Thus, visual analysis as a postfilter of virtual screenings
results obtained from docking or ROCS can be performed with
a standard molecular viewer.

An interesting example of a compound being retrieved by
ROCS, Feature Tree and Scitegic fingerprints, but not by dock-
ing, is shown in Figure 7. Utibapril (Figure 7b) was retrieved on

9.0

a) va Yk 5‘ b) Q\fﬁ*i utibapril

(rafsreme compound)
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No docking solution was obtained

h
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(ligand-based) "
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Ignoring protein
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Figure 7. The ACE inhibitor utibapril was identified by ROCS but not by
docking into the ACE crystal structure. a) The reference compound enalapril
in its co-crystallised conformation. b) 2D structure of utibapril. c) 3D align-
ment of utibapril onto enalapril generated with ROCS. The protein environ-
ment of ACE is shown in surface representation.

rank 3 by ROCS (Feature Tree: rank 5, FCFP4: rank 8) when
mapped onto the reference compound enalapril (shown in Fig-
ure 7a). No docking mode for utibapril was obtained with Gli-
deSP. This can be rationalized by analysing the ligand-based
(ROCS) alignment of utibapril onto the reference compound
enalapril in the context of the ACE protein environment. Obvi-
ously, the tert-butyl-group of utibapril, which is not present in
enalapril, would clash with the protein when docking into the
protein conformation of 1uze, as indicated by the surface rep-
resentation in Figure 7 c. We suppose that ignorance of protein
flexibility is the reason for missing utibapril when docking with
GlideSP.

154

www.chemmedchem.org

© 2010 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

A. Evers et al.

COX-2

For COX-2, the Scitegic fingerprints are outperformed by the
other virtual-screening tools, thus indicating that all these
methods are able to retrieve compounds with scaffolds differ-
ent from that of the reference structure S58. Interestingly, as
shown in Figure 6, each method is able to find active com-
pounds (among the 50 top scorers) not found by the other
methods: for example, 18 COX-2 inhibitors are retrieved by
ROCS and 15 actives by FTrees to provide a total number of 33
actives. Of these, 27 compounds are unique; this shows that
the hit lists obtained from FTrees and ROCS are highly comple-
mentary. Additional redundancy is observed when adding the
compounds from the docking approach to the virtual screen-
ing hit list. Figure 8b shows a compound (1) that was retrieved

S58 oAyt
(reference compound) iz 1

S\\
i)
o) ‘-‘F\'
GLIDE: rank 6
(ligand-based) ROCS rank?

ROCS alignment

@(’ \/?‘ CFEP4: rank 830

Figure 8. ROCS-generated 3D alignment of COX-2 inhibitor 1 onto the refer-
ence compound S58. Compound 1 was found among the top scorers by
Glide and ROCS, but is highly dissimilar to S58 based on Scitegic FCFP4 fin-
gerprints.

among the top scorers by ROCS (rank 7) and Glide (rank 6), but
was only found at rank 839 based on Scitegic FCFP4 finger-
prints. This example demonstrates that these virtual-screening
approaches are potentially able to retrieve compounds that
are different with respect to their chemical scaffolds but which
share 3D similarities and/or are able to establish similar interac-
tions with the target protein.

HIV-1 protease

It was mentioned in the docking section that HIV-1 protease
represents a challenge for both ligand- and structure-based vir-
tual-screening approaches. Indeed, the enrichments obtained
from virtual-screening approaches for this target are lower
than those for the other targets. As shown in Figure 5 and
Tables S1 and S2, the best enrichment is obtained with Feature
Trees. Encouragingly, Figure 6 demonstrates that the different
virtual-screening tools provide complementary hit lists. Each
method is able to retrieve active binders that are not found by
the other methods. Figure 9 demonstrates that, also for HIV-1
protease, the different methods provide compounds with dif-
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Figure 9. Docking mode of compound 2 in the HIV-1 crystal structure. Com-
pound 2 was retrieved on rank 2 by GlideSP but it was not identified among
the top 50 scorers by the ligand-based approaches.

ferent characteristics. In Figure 9b, a compound (2) is shown
that was retrieved by docking (rank 2), but not by the ligand-
based approaches. This compound (a cyclic urea) has a totally
different scaffold from that of the reference compound KNI-
272 (Figure 9a) and binds with a different topology into the
HIV-1 binding site. Thus, it is not surprising that compound 2
was not identified as active by the ligand-based virtual-screen-
ing approaches. Visual analysis of further HIV-1 protease crystal
structures revealed that the docking mode obtained for com-
pound 2 is realistic.

Thrombin

For thrombin, Glide, ROCS and Feature Trees perform equally
well (see Figure 5 and Tables S1 and S2). Again, the enrich-
ments are considerably better than those obtained from 2D-
similarity searches with Scitegic FCFP4 fingerprints, thus indi-
cating that the identified virtual screening hits are considerably
different from the reference compound MD805. We must note,
however, that considerable manual input was necessary to
define docking constraints to provide an enrichment as good
as those obtained from FTrees or ROCS. Again, comparison of
the top 50 hit lists revealed complementarity between the dif-
ferent virtual-screening tools.

Discussion and Conclusion
Complementarity of hit lists

This study shows that different virtual-screening tools generally
provide complementary hit lists. It was shown that the differ-
ent virtual-screening approaches are obviously able to retrieve
actives with different characteristics. Although the test data set
was relatively small (1000 compounds for each target), we ob-
served only a small overlap of the top 50 scorers. These top 50
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scorers represent 5% of the test data set. In realistic prospec-
tive virtual-screening scenarios, we might extract 1000 com-
pounds from a virtual collection of 1 million compounds, that
is, 0.1%. Thus, it is likely that in this situation the overlap of hit
lists obtained from different virtual-screening approaches will
be extremely low. Therefore, in order to increase the likelihood
of identifying actives with different characteristics, we recom-
mend applying different (structure- and ligand-based) virtual-
screening tools in parallel and merging the resulting hit lists.
Of course, the number of targets considered in this study is
too low for a conclusive statement, but we assume that similar
trends regarding the complementarity of the screening meth-
ods will be found for other targets as well. A similar conclusion
was drawn from a study performed by Bajorath et al.,”® pro-
posing that a parallel selection of candidate compounds from
individual rankings is generally superior to rank fusion. An ex-
planation for this observation is provided by Sheridan and
Kearsley:®”! different methods select different actives for the
same biological activity, and the same method might work
better on some activities than others in a way that is difficult
to predict, since receptors are diverse, and chemical groups
that appear equivalent to one descriptor (or one receptor)
might not be equivalent to another.

Relative performance of different virtual-screening
approaches

The results presented here show that structure- and ligand-
based virtual-screening methods provide comparable enrich-
ments in detecting active compounds. Furthermore, it seems
generally (but not always) beneficial to combine ligand- and
structure-based approaches if possible, that is, by considering
knowledge about ligand binding as docking constraints or
using a target-bound ligand conformation when performing
3D-similarity searches.

Application of virtual-screening hypotheses derived from
multiple ligands or protein structures

Since it was not a scope of this study, we did not investigate
in how far the selection of different or multiple ligands influen-
ces the success of a ligand-based virtual screening campaign.
The selection of the reference ligand will change the goodness
of a ligand-based virtual screen drastically. The application of
multiple (diverse) ligands, either by combination into a model
or by performing multiple searches for each reference ligand,
will generally improve the enrichment. On the other hand, it
was shown by Sheridan et al.®® that virtual-screening results
from docking are also extremely sensitive to exactly which
crystal structure is used for a particular target. Thus, when sev-
eral crystal structures with different binding-site conformations
are available for one target, the application of ensemble dock-
ing into different crystal structures and subsequent fusion of
the individual hit lists might be a further way to improve the
enrichment.
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Cascaded or parallel virtual screening?

Often, virtual screening is performed in a cascaded manner, by
using hierarchical filters of increasing computational complexi-
ty. After the elimination of chemical structures with unwanted
properties, 2D-similarity searches of known ligands are often
performed. 3D-similarity or 3D-pharmacophore searches are
options for further reducing the number of compounds for
molecular docking. Numerous successful applications of this
strategy have been reported in the literature.">'¥ In this study,
we have shown that different virtual-screening methods gener-
ally seem to provide complementary hit lists of actives. More-
over, it is known that ligand-based virtual screenings based on
different reference ligands or docking into different protein
structures™ provide different sets of actives. We wonder
whether cascaded virtual-screening is the best strategy for
identifying a maximum number of actives with diverse chemi-
cal structures. Depending on the computational resources
available for virtual screening, we suggest applying different
virtual-screening methods and reference protein and ligand
structures in parallel and finally combining the resulting hit
lists whenever possible.

Novelty of hits

Another important aspect of virtual screening is the novelty of
hits. Good et al. suggest counting additional hits only when
the chemotype of a molecule is not equal to a template che-
motype or any other chemotype that already exists in the hit
list.”¥ This approach results in a chemotype enrichment that
highlights a measure of ligands with totally different chemo-
typical properties. We tried to assess the novelty of hits by
comparing the hit rates with a “simple 2D descriptor” as sug-
gested by Jain et al.*” by taking advantage of the fact that 2D
fingerprints are only able to find compounds similar to the ref-
erence structure. The observation that docking, ROCS and Fea-
ture Trees outperform the FCFP4 fingerprints for three of the
four investigated targets shows that these methods are princi-
pally able to retrieve compounds with novel scaffolds (i.e.,
scaffolds different from a reference compound). Considering
the high degree of substructure encoding, it is not surprising
that FCFP4 fingerprints performed worst at finding novel che-
motypes. On the other hand, it should be mentioned that
even the identification of a close analogue by virtual screening
can be beneficial, because an extended SAR or a small modifi-
cation might guide the way into patent-free chemistry space.

Data-set design

We are aware that the results from a virtual screening study
are sensitive to the design of the test data base.”>**® |n our
opinion, it is hardly possible to design the one and only “per-
fect” evaluation data set. A pragmatic solution is to compile a
“decoy” set from that data base which is considered for the
next “real” virtual screening campaign, for example, a represen-
tative set of the company’s screening collection or a database
of compounds from commercial vendors. Such a set will not
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perfectly represent the whole of chemical space, but it will
show which methods are best able to identify known actives
from the virtual-screening set under consideration.

The importance of visual inspection

Analysis of the hit rates and enrichment factors should not be
the only criterion when evaluating the performance of a virtual
screen. In our opinion, it is important to understand how a
compound matches onto a model, that is, how a ligand fits
into a protein binding site, is mapped onto a pharmacophore
or aligns with a template ligand. Therefore, we recommend
visual inspection of virtual-screening hits. Although this step is
slow and lacking in objectivity, it is in our opinion one of the
most crucial steps, since we believe that the virtual-screening
tools presently available are not sufficiently reliable and dis-
criminating. In addition, aspects like novelty and physicochemi-
cal properties or, as shown in this study for HIV-1 protease in-
hibitors, the detection of artificial binding poses and other fac-
tors that might be relevant for a particular virtual screening,
are difficult and time consuming to implement into a comput-
er algorithm.

Experimental Section

Protein preparation: For each target, all available PDB crystal
structures were retrieved and visualized with Relibase.*'* Consid-
ering resolution and the activity of the cocrystallised ligand, we se-
lected the crystal structures Tuze™*? (ACE), 1cx2“*% (COX-2),
1hpx®"*Z (HIV) and 1dwc®*** (Thrombin). The protein setup was
performed by using Maestro’s “Protein Preparation Wizard” utility
and adding hydrogens and assigning the correct bond orders, pro-
tonation states and OH torsions. The protein was saved in a maes-
tro-file format and exported into mol2- and pdb-file formats.

Screening set: To compare the performance of different virtual-
screening methods, we compiled databases of “active” compounds
and decoys from the MDL Drug Data Report (MDDR) database
(MDL Information Systems Inc.). To generate the “active” sets, we
extracted all compounds with stated activity against the respective
targets; this resulted in 570 ACE inhibitors, 980 COX-2 inhibitors,
1008 HIV-1 protease inhibitors and 1269 thrombin inhibitors. After
application of molecular property filters (M,, <500, number of H-
bond donors or acceptors <8, number of rotatable bonds <16,
number of rings <8, —6>AP logP<9) and removal of prodrugs,
we extracted the set of 50 “most diverse compounds” for each set
using Scitegic’s FCFP4 descriptor.

The same filter criteria were used for the compilation of the decoy
data set to extract a diverse set of 1200 compounds without
stated activity on the four reference targets. Further removal of
compounds after inspection of molecular property filters was per-
formed to ensure a similar property distribution between active
and decoy compounds in order to avoid trivial enrichments based
on ranking by, for example, molecular weight. This procedure re-
duced the decoy data set to 950 compounds.

Quantitative description of hit lists: The effectiveness of the
screening methods was evaluated by assessing the enrichment of
known “actives” within the top-scored compounds, compared to
random selection. The enrichments are reported in graphical and
tabular form. The enrichment factor is represented by:

ChemMedChem 2010, 5, 148 - 158


www.chemmedchem.org

Virtual Screening Protocols

EF = Hitssampled/NsampIed
HitstotaI/Ntotal

EF: enrichment factor, Hits,,myeq: NUMber of true hits in the hit list,
Niamplea: NUMber of compounds in the hit list, Hits,,,: number of
hits in the full data base, N,,: number of compounds in the full
data base.

The enrichment factor was calculated based on the assumption
that all compounds with MDDR stated activity are active (true ac-
tives) and compounds with no stated activity against this target
are inactive. Although compounds with potential affinity against
the investigated proteins were eliminated from the decoy sets
after filtering, that some of the inactives identified among the top-
scored compounds by virtual screening reveal actual activity on
that target cannot be excluded. The hit rate and enrichment factor
would thus be higher.

Docking and scoring

Ligand preparation: Prior to docking, the ligand structures were
processed by using the LigPrep 2.0 utility from Schrodinger (Schro-
dinger, L.L.C., New York) to create tautomers, ring conformations,
stereoisomers and protomers.

Active-site definition: The active site was defined as given by the
default parameters for each docking tools, that is, 7 A around the
ligand for FlexX and Surflex, residues within 5 A of the ligand for
GOLD and 10 A around the ligand for Glide.

GOLD 3.1.1 docking: For each of the GA runs, a maximum number
of 100000 operations were performed on a population of 100 indi-
viduals. Operator weights for crossover, mutation and migration
were set to 95, 95 and 10, respectively, which are the standard de-
fault settings recommended by the authors for careful work. The
distance for hydrogen bonding was set to 4 A, and the cut-off
value for van der Waals was 2.5. For each ligand, 10 poses were
saved.

Surflex 2.0 docking: All default parameters, as implemented in the
6.72 release of Sybyl, were used. Cscore calculations were per-
formed for ranking, and for each ligand the ten best poses were
saved.

FlexX 2.0.2 docking: Default parameters were used. Cscore calcula-
tions were performed for ranking, and for each ligand, the 10 best
poses were saved.

Glide 4.0 docking: Distances from a grid point to the receptor sur-
face were compared to distances from the ligand centre to the
ligand surface. Good matches were kept, followed by a clash test,
subset scoring, greedy scoring and final refinement of 5000 initial
poses in the x/y/z directions. The resultant 400 refined poses were
kept, and then minimized with a distance-dependent dielectric
constant and 100 conjugate gradient steps. Final poses were
scored with GlideScore with an inclusion of an energy score.

For each ligand, ten poses were saved. Subsequently, we defined a
set of constraints for each target to consider interactions known to
be essential for the binding of the ligand in its cocrystallised con-
formation. A detailed description of these constraints is provided
in the legend of Figure 1.

Scoring: All docking poses were rescored by using nine different
scoring functions (D_Score, G_Score, ChemScore, PMF as imple-
mented in the Cscore®™ module of Sybyl7.0, DrugScore®® (PDB
and CSD), Xscore®™ (HP, HM and HS), Chemscore,*® SFC_Score®™
and PLP_Score®®). If available, the scoring functions implemented
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as objective function in the docking algorithms were included into
the set of scoring functions.

Feature Trees: For all molecules of the training and the screening
sets, Feature Tree®® descriptors were calculated. For each target,
the cocrystallised ligand (Figure 1) was automatically converted
into a Feature Tree model (FTree).”’ In the virtual screening, all can-
didate ligands of the active and decoy sets were ranked according
to their similarity to the reference Feature Tree used for the screen-
ing. For the similarity searches, we used the split-search, match-
search and dynamic match-search algorithm implemented into the
Feature Tree program.

3D-similarity searching with ROCS (version 2.1.1): Ligand structures
were preprocessed by using the LigPrep 2.0 utility from Schroding-
er (Schrodinger, L.L.C., New York) to create tautomers, ring confor-
mations, stereoisomers and protomers. Conformer generation was
performed with Omega (version 1.8.1). The maximum number of
conformers and ring conformations was set to one million, the
value for the energy window was set to —10, and the RMS thresh-
old for determining duplicate conformations was set to 0.8 so as
to provide a maximum of conformers from each ligand. ROCS
(“rapid overlay of chemical structures”) is based on the description
of molecules by physical characterization of the shape and electro-
statics of a reference and a query molecule. For each target, the
reference ligand was used either 1) in its cocrystallised conforma-
tion, 2) utilising the Omega conformer closest to the cocrystallised
conformation or 3)the global-energy-minimum conformer ob-
tained from a conformational search performed with MacroModel.
The compounds of the screening data sets were mapped to the re-
spective reference ligands with ROCS and ranked according to the
“ComboScore”, “ColorScore” and “ShapeTanimoto”.

Keywords: active compounds - docking
molecular similarity - virtual screening
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