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ABSTRACT: We introduce the new knowledge-based scoring
function DSX that consists of distance-dependent pair poten-
tials, novel torsion angle potentials, and newly defined solvent
accessible surface-dependent potentials. DSX pair potentials are
based on the statistical formalism of DrugScore, extended by a
much more specialized set of atom types. The original Drug-
Score-like reference state is rather unstable with respect to
modifications in the used atom types. Therefore, an important
method to overcome this problem and to allow for robust
results when deriving pair potentials for arbitrary sets of atom

types is presented. A validation based on a carefully prepared test set is shown, enabling direct comparison to the majority of other
popular scoring functions. Here, DSX features superior performance with respect to docking- and ranking power and runtime
requirements. Furthermore, the beneficial combination with torsion angle-dependent and desolvation-dependent potentials is
demonstrated. DSX is robust, flexible, and capable of working together with special features of popular docking engines, e.g., flexible
protein residues in AutoDock or GOLD. The program is freely available to the scientific community and can be downloaded from

our Web site www.agklebe.de.

B INTRODUCTION

Supported by an increasing number of deposited crystal
structures of relevant drug targets, structure-based virtual screen-
ing has become an important aspect in modern drug research.
Molecular docking is used to generate reasonable geometries
of protein—ligand complexes from huge compound libraries.
Popular docking programs, such as AutoDock,' > DOCK,*
eHiTS,® FlexX,6 Glide,”® GOLD*'° and Surflex,"" use different
approaches to solve the ligand placement problem,"” and all
methods are able to generate near-native binding geometries.13716
However, it has also been shown that the position of the pose
closest to the experimental pose is distributed rather randomly
among all generated poses, when they are ordered with respect
to the docking score.”” Hence, a reliable evaluation of computed
protein—ligand complexes is still one of the most challenging
problems in a virtual screening scenario.

We will distinguish between three different tasks a scoring
function should accomplish: (i) If a distinct native binding mode
for a compound exists, the function should identify the pose
closest to the native conformation among a huge number of
generated poses for this compound. (ii) If a set of different
ligands binding to the same protein is given, a reliable scoring
function must be able to rank the ligands according to their
binding affinities. (iii) If a series of arbitrary protein—ligand
complexes is given, the linear correlation between predicted
scores and binding affinities should be as high as possible.

As proposed by Cheng et al,'® we will refer to the first
criterion as “docking power”, the second as “ranking power”,
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and the third as “scoring power” (or synonymously “affinity
prediction”). A scoring function that is perfect with respect to
scoring power would also be perfect with respect to ranking
power and superior in docking power. However, considering
the level of simplification of the underlying biophysics, current
scoring functions are far-off from being perfect in affinity pre-
diction. Especially protein flexibility, desolvation effects, and
entropic considerations involving torsional, translational, and
rotational degrees of freedom are not sufficiently accounted for.
Computationally expensive methods like free energy perturba-
tion,"” thermodynamic integraltion,20 or MM-PBSA calculations®
can yield accurate results but are not applicable in a high-throughput
virtual screening campaign, as sufficient conformational sampling
would be computationally too demanding. Nevertheless, scoring
power has no direct relevance for rescoring. Instead, relative
ranking of a sample of candidate ligands with respect to their
affinity to one given target is required and not the absolute
affinity (which can be determined experimentally for the most
promising candidates). Most likely, a near-native pose is a
prerequisite to yield correct ranking. In consequence, high
ranking power is rather useless without high docking power.
Therefore, a scoring function should be adequate for both,
docking and ranking, or at least the task can be split into a
combination of two functions, each tailored for one goal. One
could argue that sufficient scoring power is required to predict
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cross reactivities, but even in this case ranking with respect to a
reference compound could be satisfying.

With dependence on the methodological background, scoring
functions are often classified into three categories: (i) Force-
field-based scoring functions™'® use classical molecular
mechanical force fields to evaluate binding energy. (ii) Empirical
scoring functions®”** > decompose the total energy into
several linear energy terms. The weighting of the individual
terms is done by regression analysis using a training set with
experimental binding affinities. (iii) Knowledge-based scoring
functions® ~** calculate the total score as sum of statistical
potentials, which are derived from a database of known protein—
ligand complexes.

This classification is rather crude and some scoring functions
are difficult to assign to one of the three categories. For example,
MotifScore** does not apply the usual decomposition into indi-
vidual atom—atom terms but instead scores complete three-
dimensional motifs.

Because they are trained by affinities, the key skills of empirical
scoring functions should be ranking power and scoring power. As
a shortcoming, their predictive power strongly depends on the
similarity between important interactions in the complex under
evaluation and important interactions in the training set com-
plexes. Furthermore, they suffer from both, uncertainties in the
structural data and experimental errors for the affinity data of the
training set.

In contrast, knowledge-based functions do not rely on affinity
data but exploit comprehensive crystallographic information.
Thus, they are more general and their key skill should be docking
power because the statistical potentials reflect native binding
geometries. When only distance-dependent atom—atom poten-
tials are used, they are also faster to compute than empirical
functions. This is important, as docking power needs many more
function evaluations compared to ranking power.

In this study, we present a new knowledge-based scoring
function named DSX (DrugScore eXtended), whose pair poten-
tials are based on the DrugScore formalism.**® We extended
this approach with respect to a more detailed atom type assign-
ment and a modification to overcome a problem with the
reference state. We also included statistically derived torsion-
angle potentials, which allow for fast relaxation of docking poses
and can improve docking power and ranking power. In addition,
a new type of solvent-accessible-surface-dependent potential
is introduced and a validation of DSX is presented based
on the carefully prepared and publicly available data set of
Cheng et al.'®

The next section supplies the theoretical background for sub-
sequent discussions about reference states, volume corrections,
and the newly defined statistical potentials. It also clarifies incon-
sistencies in terminology and foundation of the formalisms that
are found in the literature. Furthermore, differences between the
most 8popular knowledge-based functions, namely, PMF,**
ASP,*® and DrugScore, 536 wwill be presented along with the
implemented modifications and extensions in DSX.

B THEORY

An idea that originally lead to knowledge-based potentials is
based on the Boltzmann distribution
o E()/kT

2(T)

"0 = bl = 0

where n(i) is the number of particles in a set of states i with the
energy E(i), N the total number of particles in the system, T
the absolute temperature, k the Boltzmann constant, and Z(T)
the partition function (or Boltzmann sum over states). The
fraction p(i) is a state-dependent density function, which is also a
probability function. Equation 1 is the distribution function for
the canonical ensemble, hence for a system in thermodynamic
equilibrium with fixed temperature, volume, and number of
particles. Rearrangement leads to an equation which is often
referred to as the inverse Boltzmann law.

E(i) = — kT In(p(i)) — kT In(Z(T)) 2)

If the partition function is unknown, one can still calculate energy
differences compared to a reference state, because Z(T) is con-
stant at constant temperature.

AE = E(i) — Et = — kT In(p(i)) + kT In(p,)

[P
= —kT1 o (3)

In the theory of liquids,44 free energies are calculated using radial
distribution functions g(r) corresponding to the fraction (0(1)) /(pres)-
The Helmholtz free energy W,,(r) of two particles a and b in a
homogeneous solvent is

Wab(r) = — kT ln(g(r)) = ab(r) + O0Gy
g(r) _ Pab_(f) _ Pab(r) (4)
pref(r) Pref(i’)

which is the reversible work spent or gained when transferring
a and b from infinite separation to a distance r. In this case,
the reference state is the ideal gas, thus P,,(r) corresponds to the
probability to find two particles in liquid at a distance r, while P,.(r)
corresponds to the probability to find them at the same distance in an
ideal gas. Because W,,(r) corresponds to the mean force acting on
the two particles due to their interactions with the surrounding 0 G,
and with each other Uy,(r), it is called a potential of mean force.
In analogy to eq 4, attempts were made to use potentials of
mean force for protein folding prediction®** and for scoring of
protein—ligand complexes.*' Here, the contact densities are cal-
culated from the contact data found in the protein data bases like
the PDB. However, it has been clearly pointed out that the
derived statistical potentials are no potentials of mean force.*”*°
In essence, the radial distribution functions for the protein
systems are derived for particles taken from different environ-
ments. That is, a and b have different interactions with their
surrounding in different protein—ligand complexes. Thus, the
0G,, is different for each contact ab, and averaging this data
cannot yield a density function that corresponds to the g(r) used
in eq 4. Furthermore, the U,,(r) in eq 4 are additive but the 0G,,
are not.*” In consequence, a partition of the total free energy into
pairwise atom—atom contributions is not valid. With the argu-
ment on the basis of eqs 2 and 3, the problem simply is that the
distribution of atom—atom contact distances does not really
follow the Boltzmann distribution and therefore they cannot be
used to calculate energies based on this statistic. The reason is
related to the problem of different environments. Two atoms a
and b in a protein are not necessarily found at thermodynamic
equilibrium distances even though the complete system might be
at equilibrium because the intramolecular structure of both,
protein and ligand, prevents a Boltzmann like distribution.
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Taking all this into account, we should strictly avoid terms like
“potential of mean force” or “energy’ when we talk about statistical
potentlals Koppensteiner and Sippl®° even proposed to avoid
the term “potential”, instead “preference” or “quantity” should be
used. As the term “potential” is rather popular and not necessarily
linked to an energy function, we will also stick to this term in the
following.

Given that the values computed by statistical potentials are not
energies, we can drop the linear factor kT and replace the term
“energy” by “score”, which leads to the master equation for
knowledge-based scoring functions.

N
score(i) = —1 <Pref> (5)

In the case of pairwise distance-dependent contributions, the
total score for a given complex of protein atoms a;, and ligand
atoms 4 is calculated as

total SCOI€pyir = 22score@(a[,), l(al),r(ap, al)) (6)

a, a

scorepqr(p,,r) = —In <M> (7)

Pref

where p(a,) and I(a;) are the atom types and r(a,a;) is the
distance of a, and a;. Equation $ is not necessarily restricted to
distance dependent atom—atom scores but can also be applied to
many other structural features like bond or dihedral angles. Usin
Bayesian probability theory, one can obtain similar equations,’
but the problem of deriving meaningful probability functions
remains and the prerequisite of pairwise independence is not
tulfilled. Finally, we should accept statistical potentials as a class
of heuristics and only the experiment can tell us how meaningful
they are.

Distance-Dependent Pair Potentials. Besides the choice of
appropriate atom types and an appropriate data sample, the
choice of a proper reference state is crucial for the quality of
statistical potentials. In case of PMF*"* or ASP,*® it has been
selected as state of no interaction, referring to the analogy to
potentials of mean force. In contrast, the reference state used in
DrugScore is chosen as state of mean interaction. In principle,
Prer can be seen as a kind of weighting function for p(i) to
successfully apply eq S. Another aspect often discussed is the
volume correction for atom types i to account for the de facto
available volume.

PMF, ASP, and DrugScore are the most popular knowledge-
based scoring functions and have been evaluated on the test set
used in this contribution. With respect to the changes in our new
scoring function DSX, we will focus our comparison concerning
reference state and volume correction to these functions. All are
based on eq 7 but differ in the definition of the density functions.

In PMF, we have

O (o) = f(br) e T)

AV() )

Pt = Prt (B)]) = )

V(R)

where N(p,l,r) is computed from the database as the number of

contacts between protein atom type p and ligand atom type [ with
a distance in the interval [r,r + bin_size[. The contact numbers
are normalized by the theoretically available volume AV(r) of the
spherical shell corresponding to [r,r + bin_size[. The factor f(I,r)
is a correction of the theoretically available volume due the space
that is occupied by other ligand atoms (averaged from the data-
base). Ris the cutoff radius of 12 A, and V(R) is the volume of the
corresponding sphere. Strictly speaking, in this case the density
functions are not probability functions. However, an applied
normalization will not change the value of the fraction. Here, the
reference density is clearly dominated by long-range contacts and
thus an approximation to a state of no specific interaction.
In ASP, we have

ASP _ N (P: l, ")
) = R G (10)

' =8.0
B = 60 = (groried ) )
o AVEFCA @)/ a0
where, in addition to a ligand volume correction, also a protein
volume correction f(p,r) is used. The angle brackets stand for the
calculation of a mean value over all bins from 6 to 8 A. As in PMF,
the reference is chosen as a state of no specific interaction and
the density functions are not probability functions. The cutoff
distance used for scoring is 6 A.
In DrugScore, we have

5o, 1) = Nipbr) (12)

ZN (p,Lr")/AV(F)
Zzp(p/ /
/ l/
Pt = Prt(r) = ———— (13)
npnl
where 7, is the number of different protein atom types and n; is

the number of different ligand atom types. Here, the reference is
selected as a state of mean interaction and the density functions
are also probability functions. The latter fact is important, because
averaging over all density functions without normalization would
result in a reference dominated by contact types with high occur-
rence frequencies. As for ASP, the cutoff distance is 6 A.

It is not important whether the reference is chosen as a state of
no interaction or a state of mean interaction. Its main task is to
weight p(p,r) in the best achievable agreement with experi-
mental evidence. In eqs 9 and 11, the reference depends on the
contact type p_[; hence, it is constant for a given contact type. As
a consequence, the weighting between two different contact
types p1_I and p;_I, is constant for all distances and the extrema
in the potentials will always correspond to the extrema in the
p(p,lr). In eq 13, the reference is solely a function of r. The
weighting between different contact types is done by averaging
over all possible contact types, but in contrast to PMF and ASP
the weighting for short-range interactions of two given contact
types may differ from the weighting of long-range interactions
for the same types. As a result, the extrema of the DrugScore
potentials can differ from the extrema of p(p,l,r).

An advantage of the DrugScore reference state is the implicit
inclusion of a volume correction. At short distances, we generally
find fewer contacts than theoretically expected. This is due to the
inaccessibility of space actually occupied by other ligand or
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Figure 1. Density functions for two contact types processed from the
CSD. 0.30h_O.carb (solid line) contact between the hydroxyl oxygen
and carbonyl oxygen and O.3et_O.carb (dotted line) contacts between
the oxygen in an aliphatic ether and a carbonyl oxygen.

contact density

100 200 300 400 500 600
distance [pm]

Figure 2. Density functions for two contact types processed from the
CSD. N.3p_0.co2 (solid line) contact between a primary sp® nitrogen
and oxygen in deprotonated carboxylates and N.3p_0.30h (dotted line)
contact to a hydroxyl oxygen.

protein atoms, but it also implies that the reference state obtains
lower values at short distances. Thus, the ratio (o(p,,r))/(Orer
(r)) does not change in the mean. This implicit correction is an
average correction for all atom types and it is sufficient as long
as the available volume for particular atom types is not signi-
ficantly different from the averaged value. However, Mooij and
Verdonk®® demonstrated that there are considerable deviations
from the mean value in the case of protein atoms. Thus, also for
DrugScore-like pair potentials, an explicit volume correction
seems to be necessary when deriving contact data from protein
complexes and we will investigate its influence in the Results and
Discussion section.

A putative disadvantage of the DrugScore reference state is the
fact that any incorrect or erroneous density function will influ-
ence all resulting potentials, or more generally speaking, there is
only one reference function that will affect and therefore deter-
mine the quality of all potentials. The latter observation becomes
even more important due to another problem of eq 13 which we
will discuss in the next section.

DSX Pair Potentials. DSX pair potentials are based on eqs 12
and 13, but in contrast to DrugScore, DSX does not apply Sybyl
atom types but atom types defined by fconv.** The importance of
the utilized atom-type set on the quality and reliability of statis-
tical potentials has been shown in previous studies,”®>* and the
choice of appropriate types is not trivial. In case of the Sybyl
types, one major concern regards the missing differentiation
between oxygens with and without donor functionality (both
0.3). In Figure 1, two fconv-type-based density functions derived
from the Cambridge Structural Database (CSD)>* are shown.
With the use of Sybyl types, O.3oh_O.carb and O.3et_O.carb
would be merged into one single density function O.3_0.2. With
dependence on the occurrence frequencies of hydroxyl and ether
oxygens (both assigned as 0.3), information about the hydrogen-
bond interaction would be lost. In other cases, it is not really
obvious whether differences in contact densities have to be
expected. As already mentioned, one problem with the analogy
to potentials of mean force is that particles present in different
environments should also be treated as particles of different
types. Thus, the more atom types we differentiate with respect to
their environment, the more this problem will be reduced. The

degree of differentiation is mainly limited by the available contact
information in the knowledge base. For DSX, we started with the
158 fconv atom types®” and excluded all hydrogen atom types as
well as unusual metal types. We also merged some atom types
with low occurrence frequencies (see Methods). However, even
if we assume that all possible contact types of the remaining atom
types will be sufficiently represented in the database, an increas-
ing differentiation will raise another problem with respect to the
reference state as defined in eq 13. If an atom type p; is split into
two new types p;; and py,, the possible contact types p; I, are
considered twice as p;;_I, and py,_I,. This is desired in case that
all contact density functions p;; [, are different from the
corresponding functions py,_I,, but as shown in Figure 2 it is
also possible that two contact types are essentially equal. In that
case (p1_L.=p11_L.=pi2_l.), the only effect of splitting up p is
to double the weight of p; I, in the reference state. Theoretically,
one could split p, into a large number of subtypes p,,, but if
these subtypes do not differ from p;, the result would be a
reference state that is equal to the average of the p; I, and the
information of other contact types p, L. would be significantly
downscaled.

Our strategy to reduce this problem is the clustering of the
density functions by means of an appropriate similarity measure.
In contrast to the merging of atom types, here it is possible to
cluster two density functions p;; I and py, I, but to keep the
differentiation between p;;_I, and py,_I. The definition of the
density functions for DSX results as

Z N(p,l,r)

plec

pDSX(C;V) = AV(T) Z ZN@) l,r’)/AV(r’) (14)
plect
So(é,n

Pat’ = Prt (1) = ——— (15)

Ne

where ¢ denotes an individual cluster of contact types and 1. is the
number of clusters.
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From a probabilistic point of view, eq 14 is an estimator for the
conditional probability to find a contact at distance r, given the
contact type c. The reference is an estimator for the averaged
probability to find an arbitrary contact at distance r and the
resulting potential is a log-likelihood function.

P (e) = Pl (16)
TR(1¢)
P = L = P (17)

P(rlc)

scorel¥ = _1n( o ) (18)

In principle, arbitrary likelihoods could serve as appropriate
scoring measures, as long as the calculated density functions
are good estimates for the corresponding probability functions.
For example, equivalently to eq 18, one could define

(5)

SCOrepy;r =

— pldly) = N(c, r)
p(C; V) - P( | ) F(C);N(C/, f)/F(C/) (20)
Zp(cr )
Pret = Pret(c) = Plc) = rT (21)

where p(c,r) is the conditional probability to find a specific contact
type ¢, given the contact distance 7, and #, is the number of used
distance bins. With this definition, a normalization with respect to
the (corrected) theoretically available volume would not be neces-
sary. Instead, a normalization with respect to the occurrence
frequencies of contact types would be mandatory, because otherwise
the highly populated types would dominate p(c,r). One possible
normalization factor could be F(c) = N(c) = IN(c, '), where
N(c) is the total number of contacts of type’c found in the
knowledge base.

DSX Torsion Potentials. To allow for a local relaxation of
docking poses and to deal with unlikely torsion angles produced by
docking programs, we developed knowledge-based torsion angle-
dependent potentials for DSX. On the basis of eq S, we defined the
state i of a torsion as a function of the four atom types 4, b, ¢, and d
being part of the torsion, a qualifier ¢, and the actual torsion angle ¢.

DSX — p(t ) - P(¢lt)
scoreX>X(t,¢) = —1 < o ) 1 (f’(cp))

_ N(9)
YN(t¢')
z

Pref = pref(¢)
So(t,9)

Ny
t = t(a,b,cd,e) (22)

P(t: 4))

We are using four different values for e: (i) e = 1, neither b nor cis
part of a ring system; (ii) e = 2, b or ¢ (exclusive) is part of a ring

e=3 e=4

Figure 3. Examples to illustrate different values for the qualifier e.

system; (i) e = 3, b and c are part of different (not fused) ring
systems; and (iv) e = 4, b and c are part of the same ring system.

An example for all four types is given in Figure 3.

The primary intention for the torsion score is to penalize un-
likely torsion angles rather than a good correlation with correct
torsional energies. As a particular bond can be part of more than one
torsion, the score for each bond is calculated as the mean of all torsions
it participates in. A clustering of torsion types tis not necessary, as only
a set of rather general atom types is considered (see Methods).

DrugScore SAS- and DSX SR-Potentials. To account for
desolvation effects, Gohlke et al*® introduced a statistical poten-
tial in DrugScore that is based on the solvent-accessible surface (SAS).
Individual SAS potentials for either protein atom types p and ligand
atom types [ can be derived from a database, but we will only use /in
the following equations, as the formalism is identical.

lCOm lexedy SAS
scorelrs (1, SAS) = —In Pleompien SAS)
Pref (luncomplexed) SAS)
N(I,SAS) (23)
PUhSAS) = 5 5AS)
SAS

For an isolated atom g, its SAS corresponds to the surface of a
sphere with radius (1) = rqw(l) + 1.4 A, because 1.4 A is the
approximate radius of a sphere occupied by a water molecule. The
SAS for an atom in the complexed state is calculated as the part of
its surface that is not in contact with any other protein or ligand
atom. The SAS for a protein atom in the uncomplexed state does
not consider ligand atoms, and the SAS for a ligand atom in the
uncomplexed state does not consider protein atoms, respectively.
Gohlke et al.*® denote the SAS in the uncomplexed state as SAS,
and we will use both terms synonymously. Parts of SAS, that
correspond to polar atoms are not excluded from SAS if the
contacting atom in the complex is also polar, because hydrophilic
groups transferred from the solvent to a polar protein environ-
ment should exhibit roughly balanced desolvation contributions.
In eqs 7 and 8 of the original paper, Gohlke et al.3 used AW,(SAS,
SAS,), which requires a more detailed specification. As illustrated
in Figure 6 of the original paper, the potentials for a given atom
type only depend on the SAS of atom i. In detail, the definition
would be AW,(SAS, SAS, = SAS), which becomes more obvious
considering the probabilistic definition given in eq 24:

P<SAS | lcomplexed) >

__\T7 v |Fcomplexed) 24
P (SAS | luncomplexed) ( )

scorenys (L, SAS) = —ln<
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Given an atom type p or ], the score is the preference to find a
complexed atom with a particular SAS compared to the same SAS
in the uncomplexed state.

The use of an SAS-dependent term as defined in eq 24 to score
desolvation effects can be questioned, because only changes in
the solvent accessible surface ASAS can contribute to binding
energy, but the SAS as calculated here only contains averaged
information about this difference. Therefore, it does not allow
one to deduce ASAS for a specific complex. In other words, the
original DrugScore SAS potentials define a score based on the
probability to find a specific atom type with a defined degree of
burial in protein—ligand complexes, but they do not measure
effects depending on the actual ASAS. In analogy to eq 18, one
could define a ASAS-dependent potential as

P(ASAS|Z)>

B(ASAS) (25)

score(l, ASAS) = — ln(
but instead, we decided to use a potential that holds information
about both, the preference for a distinct SAS (as in DrugScore)
and the amount of ASAS. Therefore, for each atom a; we
calculate a ratio

SR(a) = SASUkompiend) | ASAS
: SAS( luncomplexed ) SAS,

(26)

and defined the DSX-SR-potential as shown in eq 27,

scoreDSX (¢, SR) = ln(P(SR|C)> o (p(C, SR))

ﬁ(SR) Pref

Y N(I, SR)

P(c, SR) = zl:EiN(l, SR/)
lecSR
ZP(Cr SR)
Pret = Pret(SR) = ———— (27)

ne

where ¢ denotes a cluster of ligand-atom types and n, is the
number of clusters. We like to point out again that in case of
eq 23, the SAS in an uncomplexed state is an averaged value for
the entire database, whereas in eq 26 it is a specific value for each
individual atom in a specific protein—ligand complex. The SR
potentials for protein atoms are calculated analogously.

B METHODS

For all purposes of atom-type perception, ring g)erception,
or generally parsing of input files, the fconv libraries™ were used.
It is important to use identical atom type assignments in both
processes, scoring and derivation of the potentials, to reduce the
bias of systematic errors in the atom-type perception. Further-
more, reassigning atom types in rescoring makes the program
independent from differences in the docking solutions with
respect to their atom types (which may differ among different
docking programs). For higher consistency, we also decided to
generally ignore any predefined hydrogens and set standard
protonation states (see definition files in the Supporting
Information).

We derived distance-dependent pair potentials, torsion angle
potentials, and SR potentials. Whereas torsion angle potentials
are derived from the CSD only, the SR potentials originate from
the PDB only. The total DSX-score for a given protein—ligand

complex is given by eq 28,

SCOT€oral = WpSCOT€pair + WiSCOIerors + WsSCOresg

SCOTe€pay = Z Z score?ﬁf(c(a,-, a;),r(a;, a;))
a €Pael

3y o (HT),0(0)

SCOrerors =
b Teb it
scoresg = 3, scorefy” (c(a), SR(a))
aeP
+ Y scorefy*(c(a), SR(a)) (28)
ael

where a is an atom from either set of protein atoms P or the set of
ligand atoms L, c is a cluster type, b is a central bond of a torsion
T, t is a torsion type, nt is the number of torsions for a given
bond, SR is the SAS-ratio for a protein or ligand atom, and the
wpy/s are the weighting factors used.

To enable an unbiased comparison (not trained for a parti-
cular test set), we did not adjust the weightings of the individual
potentials but only toggled them on or off with a weighting of 1.0
or 0.0. For validation, we used eight different schemes, where
DSX®P denotes derivation of pair potentials from the CSD and
DSX"P® denotes derivation from the PDB:

DSXCSD :: Pair wp = 1.0, we =00 w, =00
psx &P :: PairSR twp = 1.0 w =00 w, =10
DSX P Tors wp = 00w =10 w, =00
DSXCSD : PairTors  :w, = 1.0 w, =10 wy, = 0.0
psx P All wp = 1.0 we = 1.0 wy = 1.0
DSXPDB :: Pair wp = 1.0 we =00 w, =00
psx P SR twp = 00w =00 w, =10
Dsx' " :PairSR - iw, =10 w, =00 w, =10

Pair Potentials. Similar to DrugScore, two different knowl-
edge bases were used to derive the potentials for DSX. The first is
the Protein Data Bank®> (PDB) and the second is the Cambridge
Structural Database (CSD).>*

In the PDB-case, an initial list of 37 067 X-ray-structures with a
resolution up to 2.4 A and containing at least one ligand was used
(see the Supporting Information). Only contacts between atoms
with B-factors < 40 A* and occupancies >0.5 were considered.
We also derived a set of potentials after exclusion of all structures
being part of the primary test set (see Test Sets and Validation),
but we could not observe a difference in the validation as
presented in the Results and Discussion section. This is not
surprising, as the test set represents only 0.5% of the knowledge
base. All HETATM molecules (including cofactors) with more
than five non-hydrogen atoms and also water molecules were
considered as ligand. When processing one of these ligands,
the remaining part of the HETATMs was considered as part of
the protein.

In the CSD-case we used ConQuest*® to query the database
for all structures with an R-factor < 0.0785, at least one carbon, no
error flag set, and completeness of all coordinates. After removal
of duplicates (some structures have two entries, with and without
hydrogens, respectively), for the resulting 345726 structures
(see the Supporting Information) the crystal packings were
generated using fconv.>* To evaluate the contact data, the central
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molecule of each packing was treated as a ligand and the sur-
rounding molecules as a protein. Therefore, the packings were
generated with a size that guarantees to consider all atoms
within a range of 6 A around the central molecule. In the case
of different molecules in the unit cell, each of them was treated as
the “ligand” once.

All contact data were derived symmetrically; hence, contact
type A_Bis equal to B_A. Although this appears obvious only in
the CSD-case, we also achieved better results in the PDB-case
when not using asymmetric data.

To account for the inherent limitation of low occurrence
frequencies for some of the desired atom types we did not use the
full set of fconv atom types but we merged some of them initially.
As a result, there are 17 types for carbon, 24 for nitrogen, 10 for
oxygen, 4 for sulfur, 2 for phosphorus, F, Cl, Br, I, and 7 different
metal ion types. The corresponding fconv definition file is avail-
able as Supporting Information and gives details about the atom
types used. It also holds information about the standard proton-
ation rules applied in the atom type perception.

Only contact types with more than 1000 contacts (within 6 A)
in the database were considered for further processing. Further-
more, we neglected all types where not at least one of the two
atoms was either a carbon, nitrogen, oxygen, sulfur, or phos-
phorus. After applying these filters, we obtained 930 contact
types in the PDB-case and 1561 in the CSD-case. The lower
number of different contact types in the PDB case is not just due
to the smaller database but due to the fact that many atom types
are never part of a protein molecule. If a contact type which
remained unconsidered due to too low occurrence frequency
has to be handled in rescoring, it is mapped to the most similar
contact type with sufficient occurrence frequency. The criterion
for similarity is the same as the one used for clustering (see
below). In case a completely unknown contact type appears, it
will not be considered. However, this situation will be rather rare
and not of significant influence as many additional contacts for
this distinct atom will be regarded.

In contrast to DrugScore and most of the other knowledge-
based scoring functions, we use a bin size of 0.01 A instead of
0.1 A for both, deriving the contact data and the resulting poten-
tials. It is important to note that, due to the smoothing function
subsequently applied to the data, this has no impact on the statis-
tical significance. Whether we would use a 0.0001 A or 0.01 A
binning is irrelevant as long as we apply the same smoothing
function. For DSX we use a Gaussian kernel for smoothing;
hence, it is the 0 (parameter determining the width of the
Gaussian function) that is relevant for an appropriate signal-to-
noise ratio. We have chosen ¢ = 0.15 A, as this is in good
agreement with the triangular smoothing applied by Gohlke
et al> In the original DrugScore paper, it was argued that
the uncertainties in crystallographically determined coordinates
are the rationale for smoothing. However, these uncertainties are
already considered while averaging over a large number of com-
plexes from the database. The actual rationale for smoothing is to
increase the signal-to-noise ratio. This implies that there should
be an optimal o for each individual contact type, depending on
the number of such contacts in the database and the distribution
of the contact distances. Generally, a higher value for o should be
used for lower occurrence frequencies, but in the case of eq 15,
averaging over density functions with different o levels (lower o
for higher occurrence frequency) would increase the impact
of highly populated contact types in the reference. Moreover,
it would complicate the similarity measurement for the density

contact density

100 200 300 400 500 600
distance [pm]

Figure 4. Density functions for two contact types processed from the
CSD: CLO_P.o (solid line) contact between an organic chlorine and
phosphorus bound to at least one oxygen; CL.O_P.3 (dotted line) contact
to other phosphorus atoms.

functions. Thus, we decided to use a constant ¢ for all contact
types. We have chosen a narrower binning of 0.01 A to avoid a
second smoothing in the scoring process. If a distance falls close
to the border between two bins, an average value of both bins
should be applied. If this smoothing is neglected, a high dif-
ference in the score is possible for rather small differences in the
contact distances. With the use of a small bin size of only 0.01 A,
the differences between two bins are negligible and a smoothing
with neighboring bins can be avoided in the scoring process,
which speeds up computing.

To cluster the contact types ¢ = p I, we implemented a hier-
archical approach with complete linkage. We evaluated different
distance metrics for the p(p,l,r) and obtained the best results
using squared Euclidean distances:

r=35.50

dist(p, 0,) = X, (p,(r) = pu(r)) (29)

r=1.00

Distances were multiplied by a factor 10.0, if a and b were contact
types that not only differed with respect to the atom types but
also with respect to the element types. There is no general rule
how to choose an appropriate distance threshold for clustering.
After visual inspection of some density functions of different
distance levels, we merged the PDB potentials down to a set of
300 contact types and the CSD potentials to 600 contact types,
corresponding to maximum distances of 0.0028 and 0.0026,
respectively. Figure 4 shows the unmerged density functions with
the lowest distance in the CSD case. With the use of the men-
tioned thresholds, no contacts with different element types were
merged.

For low contact distances, the reference density in eq 15 is not
well-defined, simply because no structural data are available in
this distance range. Usually, for simple rescoring no problem
should occur, as the docking programs avoid clashes. However,
to enable minimization, a repulsive term is attached in the range
from 0 A up to the first maximum that is followed by a negative
potential value. The actual functional form of the repulsive term
can be selected arbitrarily, but a smooth connection is desired.
We have chosen to attach a function starting with the gradient of
0.025 and linearly decreasing this gradient to 0 with decreasing
the distance to 0 A.
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Furthermore, we derived pair potentials that are tailored for
usage in hotspot analysis. Here, we used a reduced set of pharma-
cophoric atom types, in detail: donor, acceptor, donor—acceptor,
aromatic, hydrophobic, and metal. If an fconv atom type could
not uniquely be assigned to one of these six categories, the
element type was used as a dummy. The fconv definition file
(with the mapping from fconv types to pharmacophore types) is
available as Supporting Information. In case of the CSD knowl-
edge base, we obtained 66 different contact types that were merged
into 62 clusters. In the PDB case, we obtained 50 different contact
types that were used without any clustering.

Torsion Angle Potentials. To derive torsion angle potentials,
we used the same CSD data set as for the DSX-pair potentials.
A 2°-binning was used for a range from ¢ = 0° to ¢ = 180°. For
smoothing, we used a Gaussian kernel with 0 = 5°, and we only
considered torsions with more than 50 occurrences in the data-
base. To cover most of the torsion types that occur in ligands, the
atom types are reduced according to the following scheme:
“Element.Hybridization” in the case of carbon, nitrogen, and
oxygen, “Hal” in the case of halogens, and “Element” for all other
elements. The result are 4464 different torsion types. With
respect to the primary test set (see below), only seven different
torsion types were not sufficiently represented by the database.
However, in only four ligands there is an unconsidered torsion
type where not at least one other torsion potential for the corres-
ponding bond is available.

SR Potentials. The structures used to derive PDB-pair poten-
tials were also used to derive SR potentials. To approximate the
SAS we use spherical grids with precomputed coordinates for
each element type. All grids consist of 162 points which were
calculated by 2-fold subdivision of an icosahedron and subse-
quent scaling to a radius of rqw + 1.42 A (to account for the
space occupied by a water molecule). For nitrogen, oxygen, and
sulfur we used a vdW-radius decreased by 0.2 A to account for
putative hydrogen-bond formation. For a nitrogen for instance,
this results in rgig = ryaw + 142 = 2.77 A and a grid of a mean
closest point-to-point distance of 0.81 A with a standard devia-
tion of 0.01 A. The mean distance to the closest 6 points is 0.88 A
with a standard deviation of 0.08 A. The SR for each ligand atom
is then calculated with eq 30

oints_ ...q(al
SR((J]) o p pl d( )

P Olntsuncomplexed (al )

(30)

with a; as ligand atom, points,ncomplexed s the number of grid
points not contacted by other ligand atoms, and points ,mplexed i
the number of grid points not occupied by other ligand- or
protein atoms. If g; is a nitrogen or oxygen atom, any contacting
nitrogen and oxygen atoms of the receptor are not considered for
pointsomplexea- The SR for protein atoms is calculated corre-
spondingly. It is calculated for those protein atoms that are in
SAS-contact to at least one ligand atom.

A bin size of 0.01 was used for the SR, and we applied a
Gaussian kernel with 0 = 0.08 for smoothing. The same atom
type classification as used for the pair potentials has been
considered, and only types with more than 50 occurrences in
the database were regarded for further processing.

For clustering, squared Euclidean distances were used again:

dist(p, ) = Y, (p,(SR) — p(SR))’ (31)

In the case of receptor atoms, we did not merge any types, as they
are sufficiently different. For ligand atoms we have also chosen a
very low distance threshold resulting in SO clusters (from 68
atom types).

Ligand Relaxation. DSX optionally features a local relaxation
of docking poses. Therefore, we adopted Powell’s method as
described in the Numerical Recipes.”” SR potentials are not used
in the minimization, and for torsion- and pair-potentials the same
weightings as specified for rescoring are used. Additionally, intra-
molecular interactions are also evaluated using the same pair
potentials used for intermolecular interactions. Here, only inter-
actions between atoms separated by at least four bonds are
regarded.

Volume Correction. To calculate volume corrections for
the PDB-derived contact data, we used a spherical grid-based
approach similar to that described for the SR potentials. Here, we
used a 5-fold icosahedron subdivision resulting in 10 242 points.
The points were scaled according to the radius under investiga-
tion, whereat a 0.2 A binning was used. For each radius bin, the
corresponding points were evaluated with respect to their neigh-
boring atoms. If no surrounding atom was closer than its vdW-
radius plus 1.4 A, the point under investigation was counted
as unoccupied. The additional 1.4 A were used to account for
the volume of a putative contacting atom. Strictly speaking, one
should derive individual data for each possible contacting ele-
ment type using the vdW-radii of these elements. However, as we
are interested in the relations between different atom types and
not in absolute values, the fixed radius should be a sufficient
approximation. The available volume fraction for an atom type a
was calculated as

Pointsunoccupied (al 7’)

Ppointsiotal (a, r)

flar) = (32)

Implementation Details. DSX is implemented in ISO C++,
and binaries for Linux and MacOS are freely available (see Soft-
ware Available).

Valid input formats for DSX are PDB or MOL2 for proteins
and MOL2 or DLG for ligand files. Cofactors, metals, and water
molecules can be supplied separately or together with the protein
(when in MOL2 format). The user can choose between different
interaction modes that specify whether cofactors, metal ions,
and/or water molecules should be handled individually or as part
of the protein. If for example the cofactor was kept rigid during
the docking process, it should be considered as part of the protein
in rescoring. However, if it was kept flexible upon docking,
also the interactions between cofactor and protein should be
rescored. In consequence, when choosing an interaction mode
with individual cofactor, this cofactor must be supplied as an
additional MOL2 file with a number of cofactor poses equal to
the number of generated ligand poses.

DSX generally ignores hydrogens in the input files, thus the
results are independent from any predefined protonation states.
Additionally, the program always redefines the atom types using
the same routines that were used for atom-type perception when
deriving the potentials.

For docking solutions obtained by AutoDock, where amino
acid side chains of the protein were kept flexible, the user can
switch-on a flag to consider the correct side chain conformations
for each solution. In that case, the original DLG file has to be
supplied. For docking results using GOLD with flexible side
chains, the necessary information is included in the MOL2 files,
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but currently the protein must be supplied in PDB format if DSX
is supposed to consider the correct side chain conformations.

If GOLD was used to dock with explicit water molecules, there
is a flag to consider the corresponding information in the GOLD
result files. If the check for covalently bound ligands is turned on,
DSX will ignore all atoms participating in a protein—ligand bond
and also their neighboring atoms. The weightings used for the
different types of potentials can be freely assigned by the user.

Furthermore, a PZMOL-based58 visualization similar to the
work of Block et al.>” was implemented. Favorable and unfavor-
able per-atom scores are visualized by blue and red spheres,
respectively, where the sphere’s radius scales with the absolute
value of the score. Additionally, single contacts with very high or
low scores are visualized as red or blue lines, and also unfavorable
torsion angles are displayed.

Test Sets and Validation. To evaluate the above-mentioned
docking-, ranking-, and scoring power, we used the test set
prepared by Cheng et al.'® It consists of a primary set of 195
protein—ligand complexes and four additional sets to assess
ranking- and scoring power. The authors of this test set evaluated
16 different scoring functions, making it one of the most com-
prehensive comparisons up until now. The primary set was
compiled from the PDBbind database,®*®" regarding quality
and diversity of the structures and considering only complexes
with experimentally determined binding constants. It covers 65
diverse targets, and each target is represented by three com-
plexes, one of them with high binding affinity, one with low
affinity, and one close to the mean. Up to 100 highly diverse
decoy poses were generated for each complex using various
docking programs followed by a subsequent cluster analysis. This
primary set can be downloaded from the PDBbind, including all
decoy structures and thus enabling a comparison using identical
input as in the original publication. The four additional test sets
consist of 112 HIV protease-, 73 trypsin-, 44 carbonic anhydrase-,
and 38 thrombin complexes with known binding constants,
respectively.

To assess the docking power of DSX, we calculated five dif-
ferent success rates on the primary test set and compared them to
the results given in the Supporting Information (part VI) by
Cheng et al.'® In two cases, a success is defined as finding the
crystal pose on rank 1 or among the first five ranks, respectively.
In the other three cases, a success is defined as finding a docking
pose approximating the crystal structure with an rmsd < 2.0 A on
rank 1, among the first five ranks, or on rank 1 excluding the
crystal pose, respectively. There are five complexes where all
decoys have an rmsd < 2.0 A (1df8, 1fcx, 1fcz, 1fd0, 2f01) and
seven complexes where all decoys have an rmsd > 2.0 A (1a30,
lelb, Inhu, ltyr, lulb, 2fzc, 6rnt). Therefore, Cheng et al.'®
computed the success rate using eq 33, where S is the number of
success cases.

_ S-S5
195—-5—-7

This was not explicitly stated in the original paper but kindly
provided by the authors on request.

To assess ranking- and scoring power, we calculated the
Spearman and Pearson correlation coeflicients for the four addi-
tional test sets and compared them with the results given in the
Supporting Information (part VII) by Cheng et al."® We also
calculated a success rate for ranking power based on the primary
set and compared the results with the information given in Table 4
by Cheng et al."® Here, a success is achieved if the three com-

-100% (33)

success rate =

plexes for one of the 65 targets are ranked in the correct order
with respect to their binding constants. Furthermore, we calcu-
lated the Pearson correlation for the complete primary test
set. For all tests, we used DSX in version 0.88. CSD and PDB
potentials were used in version 05/11.

B RESULTS AND DISCUSSION

From the results of Cheng et al,,'® we only list the best per-
forming variants of each scoring function except for DrugScore,
where all results are given. The missing results are available in
the Supporting Information by Cheng et al."* We also applied the
pharmacophoric pair potentials to the test set, although they are
mainly intended for hotsq)ot analysis. They are abbreviated by
DSX“®P::Pharm and DSX""®::Pharm.

In the Theory section we mentioned that a volume correction
is of higher importance for protein atoms, because there are signi-
ficant differences in the available volume, especially for backbone
atoms compared to side chain atoms. To assess the influence of a
volume correction for PDB-based potentials, we calculated avail-
able volume fractions for protein and ligand atoms, respectively.
Qualitatively, our results shown in Figure 5 are similar to what
was found by Mooji and Verdonk™® (see Figures 4 and 5 in their
paper). As the fractions were derived for a distinct classification
into protein- and ligand atoms, they can only be applied to asym-
metric PDB data. When using a DrugScore-like reference state,
Mooij and Verdonk®® found the potential for a contact between
protein backbone amides and aromatic nitrogens to never ap-
proach negative (favorable) values (Figure 6 in the original
paper). In contrast, Figure 6 shows a minimum at negative values
not only when we derive symmetric potentials but also when
we derive asymmetric potentials from the PDB. If we apply the
volume correction in the asymmetric case, we observe the ex-
pected effect of more pronounced minima and also an improve-
ment in the docking- and ranking power in our validation.
Surprisingly, the symmetric variant with less pronounced minima
performs even better than both asymmetric variants. We can only
speculate about the reasons. In the case of asymmetric data,
certain contact types A_B have very low occurrence frequencies,
whereas B_A is well populated. If such a type A_B has negative
impact on the reference, the performance of asymmetric poten-
tials decreases. In the symmetric case, A_B and B_A are merged
to one type that is dominated by B_A contacts; hence, a possible
bias of statistically underrepresented A_B is alleviated. For now,
we decided to neglect the volume correction, but it could be an
interesting aspect for further investigation.

Corresponding to the density functions shown in Figure 1,
Figure 7 shows the resulting DSX pair potentials.

Figure 8 gives an example for torsion angle potentials. The
solid line corresponds to a carbon chain where all atoms have
hybridization sp’, whereas the central bond is formed by two sp”
hybridized carbons in the case of the dotted line.

An example for SR potentials is shown in Figure 9. The
amount of solvent accessible surface that becomes buried upon
ligand binding increases with decreasing SAS ratio given on the
x-axis. Higher magnitudes in the case of ligand atoms indicate
higher changes of the SAS upon complex formation compared to
protein atoms.

Docking Power. Table 1 shows the validation similar to the
results recorded in Table S6, S7 and S8 from the Supporting
Information of Cheng et al.'® The most important number
can be found in the last column and corresponds to the success
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Figure 5. Available volume fractions. N.ams, nitrogen in secondary amides; N.amp, nitrogen in primary amides; C.3s, secondary sp3 carbon; O.am,

amide oxygen.
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Figure 6. PDB pair potentials for contacts between N.ams (secondary
amide) on the protein side and N.ar6 (aromatic nitrogen) on the ligand
side (asym, derivation with differentiation between N.ams_N.ar6 and N.
ar6_N.ams but without volume correction; asym-corrected, with volume
correction; sym, symmetric contact types without volume correction).

rate of finding solutions with rmsd < 2.0 A on rank 1, when
the native, crystallographically determined ligand geometry is
excluded from the decoy set. In a virtual screening run, this
solution would be the relevant pose that is compared to the top
ranks of other compounds. Therefore, it must be as close as
possible to a native geometry to allow for a reliable compound
selection.

For both, the CSD- and the PDB-case, the combination of
pair- and SR-potentials shows an improvement compared to the
pair potentials alone. It has to be noted that the DSX“*::PairSR
mode is a combination of information retrieved from the CSD
and the PDB, whereas the DSX">"::PairSR mode only relies on
PDB data. Interestingly, the differences between CSD- and PDB-
derived potentials and their combinations are only marginal with
respect to docking power.

A combination with torsion potentials (DSX®P::PairTors)
increases the recognition of native geometries but decreases the
success rate when the native pose is excluded. This indicates that
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Figure 7. Pair potentials for two contact types processed from the CSD:
0.30h_O.carb (solid line), contact between hydroxyl oxygen and
carbonyl oxygen; O.3et_O.carb (dotted line), contacts between oxygen
in aliphatic ether and carbonyl oxygen.

they are very sensitive to deviations from ideal geometries as
found in the CSD. Native geometries that are ranked on first
place by DSX®*"::Pair but not by DSX“*"::PairTors are 2g94,
7cpa, 2bok, and lbma. In contrast, DSX“SP.:PairTors ranks
native geometries of 1xgj, 2azr, 1sl3, 2bz6, 2std, 1a30, and 1rnt
on first place, but DSX*"::Pair does not. From the mentioned
11 structures, 8 have very large ligands with many rotatable
bonds. For such structures, there is a higher chance for docking
programs to fail with one of these numerous bonds; hence, it is
easier to differentiate between native pose and docking solutions
with respect to torsion angles. One could also speculate that, in
contrast to small molecule crystal packings, higher deviations
from ideal geometries are possible in protein—ligand complexes.
In that case, the CSD-derived torsion angle potentials could
penalize native poses too strongly.

We have to point out that the discussed improvements when
applying SR and torsion potentials are only marginal. It is not
sure whether these terms generally improve the results on other
data sets.
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Figure 9. Example for SR potentials: O.3oh-lig, hydroxyl oxygen in
ligands; O.30h-pro, hydroxyl oxygen in proteins; C.ar6-lig, aromatic
carbon in ligands; C.ar6-pro, aromatic carbon in proteins.

With respect to docking power, DSX outperforms all other
functions tested, except for ASP which is on a similar level. For
the used test set, the best results are obtained using all three types
of potentials in combination.

Ranking Power. Table 2 shows the validation similar to the
results recorded in Table 4 by Cheng et al.'® In the original paper,
only the best performing version of each scoring function was
evaluated. For comparison, we also present only the results for
the best CSD- and PDB-based DSX mode, respectively.

In the case of Discovery Studio, Glide, GOLD, and Sybyl,
ligand optimization was performed by the functions implemen-
ted into these programs.'® For DrugScore and X-Score, Dis-
covery Studio was used to minimize the ligands in the CHARMm
force field."® For DSX, we used the program’s own local mini-
mization in the CSD case, while in the PDB case, no minimiza-
tion is possible due to the lack of torsion angle potentials.

Table 3 shows achieved ranking correlations for the additional
test sets and it corresponds to the results listed in Tables S13,
S14, S15 and S16 of the Supporting Information of Cheng et al.'®
The results shown in parentheses were obtained when addi-
tionally applying intramolecular interactions with a weighting of

Table 1. Success Rates (%) for the Evaluation of Docking
Power”

Crystal structure on <2.0A pose on

Top1l Top5 Topl Top5 Topl pose

Scoring function pose poses pose poses no cryst.”
DS::Jain 1.5 15.4 448 792 44.8
DS::LigScore2 17.9 49.7 71.6 929 69.4
DS::LUDI2 9.7 29.2 574 836 56.8
DS::PLP1 40.5 56.4 754 973 68.3
DS::PMF 19.5 44.1 437 672 39.3
DrugScore®SP::Pair 50.3 79.5 58.5  94.0 25.7
DrugScore®SP::PairSurf ~ 44.6 80.0 541 956 25.1
DrugScore?PB::Pair 40.0 73.8 743 934 68.9
DrugScore?PB::PairSurf  39.5 74.9 743 951 69.4
DrugScore"”B::Surf 3.6 20.0 32.8 803 322
DSXCSP::Pair 50.8 774 83.6 95.6 71.6
DSXCSP::PairSR 51.3 79.0 847 96.2 78.1
DSXCSP::PairTors 52.3 77.4 842 95.1 77.0
DSXCSPAll 52.8 77.9 852 96.2 79.2
DSXCSP::Tors 8.7 20.0 383  76.5 36.1
DSXPPB::pair 50.3 78.5 842 95.6 75.4
DSXPPB::PairSR 51.8 77.9 847 95.6 78.7
DSX"PB::SR 3.6 16.9 393 825 38.3
DSXCSP::Pharm 472 76.4 798 956 73.2
DSXPPB::Pharm 415 72.3 77.6  94.0 69.4
GOLD::ASP 36.9 71.8 825 95.6 77.6
GOLD::ChemScore 17.9 50.8 70.5 86.9 69.4
GOLD::GoldScore 8.2 28.7 68.9 89.6 68.3
GlideScore::SP 18.5 50.3 732 934 72.7
SYBYL::F-Score 21.5 49.2 64.5 90.7 60.1
X-Scorel.2 323 64.6 672 913 63.4
X-Scorel.2::HMScore 30.3 57.9 68.3 90.7 62.3

“Results (excluding DSX) cited from Cheng et al.'® " The native
geometry was not part of the decoy set.

Wp_intra = 1.0. Interestingly, this improves the correlations except
for the case of thrombin.

Applying the torsion angle potentials in addition to the pair
potentials improves ranking in the case of HIV protease and
trypsin but makes the results for carbonic anhydrase worse.
Remarkably, applying only torsion angle potentials without any
assessment of protein—ligand interactions produces the best
ranking correlation of all scoring functions in the case of HIV
protease. This emphasizes the disappointing performance of all
scoring functions under assessment for this target. The ligands
for HIV protease are rather large and have many rotatable
bonds. A possible explanation for the (at least significant)
correlation with the torsion score is that in the case of ligands
with lower affinities, there are often higher deviations from ideal
torsion angles.

Intramolecular- and torsion angle potentials exhibit different
(positive or negative) impact on ranking power, depending on
the target. This implies that there is no unique best weighting
scheme for the different potentials, but instead a tailored set of
weighting parameters should be identified for each target of
interest.

DSX performs best in the case of thrombin, is second best after
X-Score in the case of trypsin, and performs second best after
PLP2 in the case of carbonic anhydrase. Astonishingly, for the
latter, the pharmacophoric potentials show significantly higher
correlations compared to the highly specialized pair potentials.

As in the case of DrugScore and also for DSX, the CSD-based
potentials have a higher ranking power compared to the PDB-
based analogues. In contrast to docking power, the application of
SR potentials decreases ranking power in most cases.
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Table 2. Success Rates (%) for the Evaluation of Ranking
Power on the Primary Test Set”

on original on optimized

complex complex

Scoring function? structures structures
X-Score::HSScore 58.5 52.3
DSXCSP:All 554 52.3
DS::PLP2 53.8 46.2
DSXPPB::PairSR 52.3 /
DrugScore“SP::PairSurf 52.3 49.2
SYBYL::Chemscore 47.7 52.3
SYBYL::D-Score 46.2 46.2
SYBYL::G-Score 46.2 36.9
GOLD::ASP 43.1 49.2
DS::LUDI3 43.1 43.1
DS::Jain 41.5 354
DS::PMF 41.5 354
SYBYL::PMF-Score 38.5 33.8
GOLD::ChemScore 36.9 41.5
DS::LigScore2 354 47.4
GildeScore:: XP 33.8 354
NHA¢ 323 32.3
GOLD::GoldScore 23.1 38.5

“Results (excluding DSX) cited from Cheng et all8t Scoring functions

are ranked by their success rates. “Ranking by the number of heavy
atoms of each ligand.

Scoring Power. Table 4 shows the obtained affinity correla-
tions for the primary test set and corresponds to the results in
Table S11 of the Supporting Information of Cheng et al.'®

After X-Score, DSX is second best in this category. The
minimization was applied as described for Table 2.

At this point, we want to refer back to our initial statement that
scoring power has little importance for rescoring. First, we will
discuss its influence on docking power: One has to keep in mind
that each rescoring of docking solutions is a consensus scoring,
because it is a combination of the scoring function used in
docking and the function applied subsequently. To generate
reasonable poses, the fitness function used in docking should
regard all contributions to binding energy and must weight
these contributions correctly. We will call such an ideal scoring
function “complete”; hence, completeness is a measure for the
amount of considered affinity contributions and the quality of
the weighting of these terms. However, some aspects of binding
energy can only be evaluated as rough approximations and other
aspects can even be neglected. For example, covalent bond ener-
gies must not be evaluated because docking programs usually
do not modify bond lengths; hence, scoring functions used for
docking can be incomplete with respect to bond energies. The
same holds true for functions used in rescoring. They can be
incomplete with respect to some binding energy contributions
that were evaluated by the docking program. Moreover, they can
also assign much higher weights to contributions that discrimi-
nate between near native and decoy poses. For example, in case
of hydrogen bonds, a docking function has to consider distances
and angles. If it relied on distances only, it would generate
unrealistic geometries. In contrast, a function for rescoring could
solely rely on the H-bond angles produced by docking programs
and give a much higher weight on H-bond distances (in case
these distances are especially valuable to penalize decoy poses).
Assigning higher weights to certain terms can decrease affinity
correlations for native poses but at the same time increase
docking power. Thus, we cannot generally conclude from high

Table 3. Spearman Correlations for the Four Additional Test
Sets”

HIV trypsin carbonic thrombin

Scoring function protease anhydrase

DS::Jain 0.023 0.698 0.133 0.491
DS::LigScorel 0.106 0.536 0.330 0.371
DS::LigScore2 0.167 0.418 0.143 0.424
DS::LUDI2 0.047 0.791 0.405 0.558
DS::PLP2 0.168 0.774 0.772 0.666
DS::PMF04 0.200 0.395 0.612 0.022
DS::PMF 0.200 0.693 0.389 0.275
DrugScore®SP::Pair 0.129 0.737 0.542 0.622
DrugScore®SP::PairSurf 0.147 0.768 0.535 0.617
DrugScore?PB::Pair 0.163 0.744 0.488 0.515
DrugScore?PB::PairSurf 0.170 0.743 0.468 0.535
DrugScore?PB::Surf 0.170 0.743 0.468 0.535

DSXCSP::Pair
DSXCSP::PairSR

0.199 (0.225) 0.762 (0.789) 0.559 (0.611) 0.709 (0.682)
0.184 (0.198) 0.733 (0.756) 0.496 (0.547) 0.679 (0.642)
DSXCSP::PairTors 0.300 (0.319) 0.782 (0.797) 0.413 (0.442) 0.703 (0.668)
DSXCSP::All 0.267 (0.291)  0.752 (0.776) 0.429 (0.454) 0.660 (0.636)
DSXSP::Tors 0.423 0.744 0.089 0.226

DSXPPB::Pair 0.179 (0.199) 0.753 (0.782) 0.575 (0.580) 0.671 (0.637)
DSX"PB::PairSR 0.160 (0.174)  0.728 (0.758) 0.519 (0.537) 0.663 (0.657)
DSXPPB::SR 0.006 0.239 0.139 0.419

DSXCSP::Pharm 0.109 (0.123)  0.744 (0.762) 0.708 (0.703) 0.744 (0.647)
DSXPPB::Pharm 0.140 (0.151)  0.710 (0.708) 0.753 (0.761) 0.708 (0.588)

GOLD::ASP 0.140 0.744 0.486 0.287
GOLD::ChemScore 0.138 0.280 0.572 0.489
GOLD::GoldScore 0.232 0.052 0.079 0.603
GlideScore::SP 0.183 0.177 0.280 0.525
SYBYL::ChemScore 0.228 0.773 0.631 0.587
X-Scorel.2::HSScore 0.214 0.824 0.595 0.586
X-Scorel.3::HPScore 0.373 0.815 0.494 0.558
X-Scorel.3::HSScore 0.291 0.809 0.555 0.593

“Results (excluding DSX) cited from Cheng et al'®

scoring power to high docking power. An example is GoldScore,
which achieves the lowest affinity correlation for the primary test
set (Table 4) but has higher docking power than X-Scorel.2::
HMScore on this test set (68.3 % vs 62.3 % in the most relevant
category), although the latter achieves the highest affinity cor-
relation. As a matter of fact, a function that achieves Pearson
correlations of 1.0 for arbitrary data sets could still fail with
respect to docking power because it could still calculate better
scores for certain decoy poses compared to the native pose. Only
a really complete function would be perfect in both aspects. As
such an ideal function is unlikely to be developed in the near
future, functions intended to exhibit high docking power should
focus on terms discriminating near-native from decoy geometries
and they must not be trained with respect to affinities. In contrast,
scoring power (which is a measure of completeness) should be
the key value while developing a fitness function for a docking
engine. DSX is particularly suited for high docking power as it
is not designed to calculate binding energies but relies on like-
lihoods for given geometries. We believe that this complements
the functions typically used in docking, which explains the
generally high docking power of knowledge-based scoring
functions.

The influence of affinity correlation on ranking power is more
straightforward: Of course, high scoring power implies high
ranking power. However, Table 3 suggests that for different
targets, different scoring functions are most suitable. This is again
a consequence of the incompleteness of the scoring functions
used nowadays. Functions intended to optimize ranking power
should therefore be tailored toward a specific target or they
should offer an option to train them for a target. The weightings
for the different scoring terms in DSX allow at least for a mode-
rate training with respect to a specific target.
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Table 4. Pearson Correlations for the Primary Test Set”

on original on optimized

complex complex

Scoring function structures structures
DS::Jain 0.316 0.339
DS::LigScore2 0.464 0.479
DS::LUDI3 0.487 0.477
DS::PLP1 0.545 0.529
DS::PMF 0.445 0.294
DrugScore®SP::Pair 0.561 0.589
DrugScore®SP::PairSurf ~ 0.569 0.585
DrugScore”B::Pair 0.524 0.543
DrugScore"PB::PairSurf ~ 0.531 0.536
DrugScore"PB::Surf 0.520 0.542
DSXCSP::Pair 0.597 0.588
DSXSP::PairSR 0.598 0.591
DSXCSP::PairTors 0.607 0.599
DSXSSPAll 0.609 0.602
DSXCSD:Tors 0.481 0.478
DSXPPB::Pair 0.567 /
DSXPPB::PairSR 0.571 /
DSXPPB::SR 0.445 /
DSX®SP::Pharm 0.560 /
DSXPPB::Pharm 0.547 i
GOLD::ASP 0.534 0.518
GOLD::ChemScore 0.441 0.528
GOLD::GoldScore 0.295 0.329
GlideScore:: XP 0.457 0.555
SYBYL::ChemScore 0.555 0.622
X-Scorel.2::HMScore 0.644 0.649

“Results (excluding DSX) cited from Cheng et al.'®

Influence of Local Minimization. Figure 10 shows the
influence of local minimization applied to the primary test set.

Both the rmsd of the best poses and the rmsd of the poses
ranked on first place by DSX slightly improve as long as the
starting geometry has an rmsd of less than 1 A. Beyond this
threshold, the results obtained after minimization get worse com-
pared to the case without minimization. This observation reveals
information about the typical size of a potential valley on the DSX
score landscape, at least about the valley where the native pose
resides. Poses with an rmsd larger than 1 A usually give rise to
minimization into different local minima.

Unfortunately, the ranking with DSX becomes worse when
applying local minimization to the native poses (Table 2) and
even the affinity correlation decreases (Table 4). A possible
explanation might be the incompleteness of DSX. For example,
proper geometry of H-bonds is only implicitly considered to
some degree in the sum of pair potentials. During a minimization,
the contact distances may be optimized at the price of unrealistic
H-bond angles. Furthermore, the weightings of intra- and inter-
molecular distance-dependent potentials and torsion angle-
dependent potentials are not trained on aflinities.

The largest improvement upon minimization in the functions
native “energy” landscapes is achieved by scoring functions of
Gold, Glide, and Sybyl that are also used as target functions
during the docking process (Tables 4 and 2). This is not
surprising because especially the improvement in affinity correla-
tion upon minimization is a measure of the completeness of the
used scoring function, and as we suggested above, completeness
is a key feature of fitness functions used for docking.

Runtime Performance. Table 5 gives some information
about the required runtime on the primary test set for DSX*”
compared to DrugScore“*”. To apply the DrugScore Surf

1.4 — — -
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a 0.8 /
= e
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Figure 10. Primary test set docking solutions ordered by increasing
rmsd values: ideal, this curve corresponds to the geometry closest to the
native pose; ideal_opt, also the geometry closest to the native pose but
after minimization of all docking solutions; DSX, the poses ranked on
first place by DSX“SP::All; DSX_opt, the poses ranked on first place by
DSX“P::All after local minimization.

Table 5. Comparison of Runtime for DrugScore and DSX on
the Primary Test Set

Scoring function runtime in seconds

DrugScore©SP::CalcPocket 249
DrugScore®SP::Pair 67
DrugScore®SP::PairSurf 3779
DSXSP::Pair 50
DSXSP::PairSR 241
DSXSP::Pair-Opt 3921

potentials (SAS potentials), it is necessary to precalculate binding
pockets. For this purpose, DrugScore is bundled with a program
named CalcPocket. We used this program to precalculate the 7 A
pockets (with complete residues) around the ligands for each
protein, respectively. Both measurements for DrugScore, Pair
and PairSurf, were performed with these binding pockets,
whereas for DSX the complete and unmodified receptor struc-
tures were used. For the calculations including a solvent acces-
sible surface term, DSX is faster by a factor of 15.7 compared to
DrugScore even without considering the time needed by Calc-
Pocket. Also in the case of scoring based on pure pair potential
evaluations, DSX is significantly faster, although DrugScore uses
smaller input structures and DSX runtime includes full atom type
perception for protein and ligand structures. The last row in the
table corresponds to the DSX runtime with the built-in local
minimization. All values were measured on an Intel Core2Duo
E6600 (2.4 GHz).

Bl CONCLUSIONS

Our new scoring function DSX combines knowledge-based
potentials for atom—atom distances with similarly derived tor-
sion angle potentials and a novel measure of the change in the
solvent accessible surface. We presented a clustering method to
alleviate deficiencies that arise from a combination of DrugScore-
like reference states and enhanced atom type definitions. Com-
pared to the original DrugScore formalism, DSX pair potentials
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demonstrated a significant improvement, especially with respect to
the recognition of near-native ligand poses (docking power).
This docking power is further improved by the application of
newly defined surface-dependent SR potentials. The novel torsion
angle potentials increased ranking power in the case of HIV protease
and thrombin. Furthermore, the combination of all three terms
produced the best success rates for docking power.

In comparison to all functions that were evaluated based on
the publicly available test set by Cheng et al.,"® DSX achieves the
best results with respect to docking power, although not trained
for this test set by any aspect. Also with respect to ranking power,
DSX is among the best three functions. Here, we suggest the
usage of pair and torsion angle potentials without usage of the SR
potentials. Additionally, scoring of intramolecular interactions
improved the correlation for three of the four targets used to
assess ranking power.

We did not adjust the individual weightings for the different scoring
terms, but we collected evidence that a specific weighting should
be adjusted for each target. Therefore, users can configure those
weightings on their own to produce a target-tailored scoring function.

We also developed pair potentials that are based on a generic
set of pharmacophoric atom types. While intended for hotspot
analyses and as a basis for pharmacophore generation, also these
potentials demonstrated high ranking power for certain targets.

CSD-based potentials generally yield better results compared
to PDB-based potentials. Most likely because of more compre-
hensive contact data for rare atom types and the general better
resolution of small molecule crystal structures.

We discussed the requirements and specialization of scoring
functions for docking power, ranking power, or usage as target
function in the docking process. In that context, our program DSX
claims to be most valuable for docking power, while other functions
that are more target specific should be used for a proper ranking.

B SOFTWARE AVAILABLE

Linux and MacOS binaries of DSX and all PDB-based
potentials are freely available from our Web site www.agklebe.
de (DSX-Online — Get DSX standalone). The software is bun-
dled with another program, named HotspotsX, which generates
contour maps based on DSX pair potentials. The CSD-based
potentials can be obtained on request from the Cambridge
Crystallographic Data Centre (CCDC). In addition, the CSD
version can also be applied using the DSX-online Web-interface
from www.agklebe.de.

Il ASSOCIATED CONTENT

© Supporting Information. The fconv definition files for
used atom types and a list of used CSD and PDB entries. This
material is available free of charge via the Internet at http://
pubs.acs.org.
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